Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Same genes, same conditions, different transport

05.03.2020

Bacterium shows phenotypic heterogeneity for methionine uptake

The bacterium Lactococcus lactis, which plays an important role in the dairy industry, is unable to produce the amino acid methionine and has to rely on uptake from the environment. To do this, the bacteria have two systems, with high and low affinity. University of Groningen microbiologists discovered that cells growing in a clonal population can differ in the uptake system they use. Furthermore, the choice for either system is maintained over many generations. It is the first time that such stable heterogeneity is observed in an amino acid uptake pathway. The results were published in the journal Nature Communications on 5 March.


In these images, cells expressing the high-affinity methionine transport system light up in fluorescent green. This creates bright green and dark colonies, but also clonal colonies that are in part bright, in part dark, where cells in the same colony have 'chosen' different paths.

Credit: University of Groningen


This picture shows individual cells that express either the high-affinity methionine transporter (bright green) or the low-affinity transporter (dark).

Credit: University of Groningen

It has long been known that bacteria grown in a clonal population (where all cells share the same genes) can nevertheless behave differently. Under harsh conditions, some cells may go into survival mode by sporulation while other cells do not. 'It is a kind of bet-hedging', explains University of Groningen Professor of Molecular Genetics Oscar Kuipers. 'Sporulation is costly for a cell, and conditions may improve. Or they may not. Taking both routes ensures that part of the population will always survive.'

Hesitant

However, this strategy had never before been observed in amino acid transport. Under Kuipers' supervision, Ph.D. student Jhonatan Hernandez-Valdes grew Lactococcus bacteria in medium with different methionine concentrations. He added a reporter gene to the cells that made them light up fluorescent green when the high-affinity methionine transporter was expressed. However, under low methionine conditions, he noticed that some cells did not light up.

At first, Hernandez-Valdes thought his cell culture was contaminated. But after several checks, it turned out that all cells carried the green fluorescence gene - though not all of them expressed the high-affinity methionine uptake system. Kuipers: 'We discovered that the switch to the high-affinity system is very slow. You could say that the cells are hesitant to switch.'

Bet-hedging

Further exploration revealed that something known as a T-box riboswitch was responsible for heterogeneity in the expression of the high-affinity transporter. Apparently, using low or high-affinity transporters makes no difference in terms of methionine uptake. 'It appears to be a matter of chance which route a cell will take. But once the choice is made, it remains fixed for over ten generations.'

Cells with either uptake system grow equally well under low-methionine conditions. So why the heterogeneity? Kuipers and his colleagues suggest two potential explanations. The first is bet-hedging, a well-known phenomenon in both bacteria and higher organisms. 'Not investing in the high-affinity transport system may offer some advantage under natural conditions.' Some cells within the population gamble on an increase in methionine availability, while others take the safe route and switch on the high-affinity system that provides them with the methionine they need even when there is very little around.

'The other possibility is that there is a division of labor: the two sub-populations cooperate, for example, cells may start to excrete methionine, or die and fall apart, thus making their amino acids available for other cells', Kuipers explains. But this scenario is very speculative.

'We do know that heterogeneity is a good thing for bacteria', he continues. There may be hundreds of different strains in a gram of soil, all battling for their niche. 'By splitting into two populations, you can better anticipate changes in the environment. That is always a smart strategy.'

###

Reference: Jhonatan A. Hernandez-Valdes, Jordi van Gestel, Oscar P. Kuipers: A riboswitch gives rise to multi-generational phenotypic heterogeneity in an auxotrophic bacterium. Nature Communications, 5 March 2020.

Simple Science Summary

The bacterium Lactococcus lactis cannot produce the amino acid methionine, so it must import it from the environment. University of Groningen scientists discovered that cells with the same genes living under the same low-methionine conditions use two different systems to get the amino acid into their cells: a high-affinity system and a low-affinity system. Individual cells are slow to choose for one of the two systems, but once a choice is made, bacteria stick to it for more than ten generations. By making use of both options, the cells probably anticipate on both a potential increase and a further decrease in methionine concentration. This is the first time scientists have observed such a stable use of different amino acid transport pathways in otherwise completely similar cells.

Rene Fransen | EurekAlert!
Further information:
http://dx.doi.org/10.1038/s41467-020-15017-1

Further reports about: Lactococcus lactis acid amino amino acid amino acid methionine bacteria bacterium genes methionine

More articles from Life Sciences:

nachricht Biophysicists reveal how optogenetic tool works
29.05.2020 | Moscow Institute of Physics and Technology

nachricht Mapping immune cells in brain tumors
29.05.2020 | University of Zurich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Black nitrogen: Bayreuth researchers discover new high-pressure material and solve a puzzle of the periodic table

29.05.2020 | Materials Sciences

Argonne researchers create active material out of microscopic spinning particles

29.05.2020 | Materials Sciences

Smart windows that self-illuminate on rainy days

29.05.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>