Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Discover Brain Circuits Enabling Hearing Develop Without Sensory Experience

22.06.2010
Using a newly applied scientific technique, researchers at the Keck School of Medicine of the University of Southern California (USC) have reached surprising findings about the role of nature versus nurture in the development of the neural circuits in the auditory cortex, the area of the brain that is responsible for processing information about sound. The discoveries will be published in the June 17 issue of Nature journal.

Two research teams at the Zilkha Neurogenetic Institute (ZNI) found that before an animal model had any hearing experience, the brain’s elementary thalamocortical circuits with balanced excitation and inhibition functions – a feature of brain activity essential for normal functions -- had already formed.

“The scientific view had been that sensory experience should play an instructive role in the initial formation of appropriate brain circuits, so this is a big surprise,” said Li Zhang, assistant professor of Physiology and Biophysics at the Keck School of Medicine, researcher at ZNI and principal investigator on the study. “Because the circuits had already formed, no sensory experience was required.”

With an eye toward future medical advances, the study is a step in addressing a major debate in neuroscience over the last century: What are the roles of genetics and environment in the development of the human nervous system?

“In general we know that both factors play essential roles in the establishment of neural circuits,” said Zhang. “The question is which factor plays a dominant role in the different stages of development, and how. It’s a difficult question to resolve because of the dauntingly complex structure of the brain.”

Their second finding is about how the circuits change during development. They found that after the onset of hearing an elegant refinement of the neuron’s excitation function takes place.

“Previously, it was thought that a pruning of profuse connectivity was responsible for the sharpening of sensory receptive fields of neurons, which leads to improved sensory processing during development,” said Zhang. “We now see that the sharpening depends more on fine adjustments in the strength of excitatory neural connections, and that modulations of the excitatory and inhibitory connections lead to a slight breakdown of the priorly formed excitation–inhibition balance.”

Key to these findings, Zhang said, was a new method of studying the functional neural circuitry of the brain. In the experimental setting, the researchers surgically exposed the cortex of the brain of a young anesthetized rat. They used glass microelectrodes to reach and patch onto neurons buried in the cortical tissue, and then break into their membranes in order to monitor their electrical activity. That allowed the researchers to separately record the inhibition and excitation functions of the neurons.

“This is the first time anyone has applied this cutting-edge electrophysiological technique – in vivo whole-cell voltage-clamp recording – to the developing cortex of the brain,” Zhang said. “Previous hypotheses were limited by techniques that couldn’t reveal detailed structure and subtle changes.”

One research team was led by Zhang, and the other was led by Huizhong W. Tao, an assistant professor in the Department of Cell and Neurobiology at the Keck School.

Currently, Zhang’s research team is examining how the neural circuitry is affected when animals are exposed to noise. “One potential extension of this research line is in looking at how environmental factors play a role in further sculpting the circuits during later development,” he said. In the future, he noted, such research may open the door to insights about the cause of disorders such as autism, in which it is speculated that the auditory system is a major target.

Leslie Ridgeway | Newswise Science News
Further information:
http://www.usc.edu

More articles from Life Sciences:

nachricht Staying in Shape
16.08.2018 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Chips, light and coding moves the front line in beating bacteria
16.08.2018 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>