Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers at Mainz University develop a sustainable method for extracting vanillin from wood processing waste

04.06.2020

Electrolytic depolymerization of lignin in caustic soda could replace the existing environmentally harmful process for producing the most widely used flavoring and aroma agent in the world

Scientists at Johannes Gutenberg University Mainz (JGU) in Germany have developed a new sustainable method of extracting the flavoring agent vanillin from lignin, a component of wood. Large quantities of waste lignin accumulate during the production of pulp, an important raw material for making paper.


Lignin resulting from pulp production

photo/©: Michael Zirbes, JGU

The process the researchers describe in their article in ACS Sustainable Chemistry & Engineering involves dissolving the lignin in caustic soda and heating this mixture to 160 degrees Celsius in a simple electrolysis cell with nickel electrodes to which a current is applied. This oxidizes and breaks down the lignin to produce vanillin of such a high quality in a reagent-less process that it can be officially declared natural vanillin.

"After many years of intensive research, we have now made a real breakthrough," said Prof. Siegfried Waldvogel, coordinator of the SusInnoScience (Sustainable Chemistry as the Key to Innovation in Resource-efficient Science in the Anthropocene) research focus at JGU, who developed the project. To date, vanillin has been predominantly made from petroleum, a process which, in contrast to this new method, produces toxic waste difficult to dispose of.

There is in fact already a process for producing vanillin from lignin. However, according to Waldvogel, this is much more expensive, not least as it requires the use of copper. Furthermore, only a small proportion of the waste stream of lignin from pulp production can be processed using this method.

In terms of quantity, vanillin is the most important flavoring and aroma agent in the world. Many tens of thousands of tons of it are used every year in the production of food and cosmetics as well as in the synthesis of pharmaceuticals. On the other hand, more than 100 million tons of lignin is generated as waste in pulp production each year to be then mainly thermally exploited.

"Because our method has a vanillin yield of around four percent of the lignin used, it could theoretically meet the global demand for vanillin very easily," said Waldvogel. He is convinced that the new process is "significantly better" than the previous methods of vanillin extraction – not only because no toxic waste is produced, but also because it is more commercially viable – and he is already in discussions with relevant business partners.

As part of the LIBERATE project funded by the European Union (EU), the method, which has so far only been used in the laboratory, will soon be tested on an industrial scale. A pilot plant is currently being built for this very purpose at the Norwegian research institute SINTEF, with which JGU is cooperating. In addition, Waldvogel wants to determine whether the new method can be further improved by producing vanillin not only from pure lignin, but directly from the so-called black liquor, a byproduct of wood processing in pulp mills also containing lignin.

Images:
https://download.uni-mainz.de/presse/09_chemie_vanillin_elektrolysezelle.jpg
An electrolysis cell developed at JGU for the extraction of vanillin from lignin
photo/©: Michael Zirbes, JGU

https://download.uni-mainz.de/presse/09_chemie_vanillin_lignin.jpg
Lignin resulting from pulp production
photo/©: Michael Zirbes, JGU

https://download.uni-mainz.de/presse/personal_09_waldvogel.jpg
Professor Siegfried Waldvogel, coordinator of the SusInnoScience (Sustainable Chemistry as the Key to Innovation in Resource-efficient Science in the Anthropocene) research focus at JGU
photo/©: Eric Lichtenscheidt

Related link:
https://susinnoscience.uni-mainz.de/ - SusInnoScience (Sustainable Chemistry as the Key to Innovation in Resource-efficient Science in the Anthropocene) research focus at JGU

Wissenschaftliche Ansprechpartner:

Professor Siegfried R. Waldvogel
Department of Chemistry
Johannes Gutenberg University Mainz
55099 Mainz, GERMANY
phone +49 6131 39-26069
e-mail: waldvogel@uni-mainz.de
https://www.aksw.uni-mainz.de/

Originalpublikation:

M. Zirbes et al., High-Temperature Electrolysis of Kraft Lignin for Selective Vanillin Formation,
ACS Sustainable Chemistry & Engineering, 21 April 2020,
DOI: 10.1021/acssuschemeng.0c00162
https://pubs.acs.org/doi/10.1021/acssuschemeng.0c00162

Weitere Informationen:

Read more:
https://www.uni-mainz.de/presse/aktuell/8934_ENG_HTML.php – press release "Research on the sustainable conversion of lignin into valuable chemical compounds is attracting further funding" (3 July 2019)


https://www.uni-mainz.de/presse/aktuell/6739_ENG_HTML.php – press release "EU funding to promote the utilization of lignin" (24 October 2018)

Kathrin Voigt | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Polarization of Br2 molecule in vanadium oxide cluster cavity and new alkane bromination
13.07.2020 | Kanazawa University

nachricht Researchers present concept for a new technique to study superheavy elements
13.07.2020 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron cryo-microscopy: Using inexpensive technology to produce high-resolution images

Biochemists at Martin Luther University Halle-Wittenberg (MLU) have used a standard electron cryo-microscope to achieve surprisingly good images that are on par with those taken by far more sophisticated equipment. They have succeeded in determining the structure of ferritin almost at the atomic level. Their results were published in the journal "PLOS ONE".

Electron cryo-microscopy has become increasingly important in recent years, especially in shedding light on protein structures. The developers of the new...

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

Black phosphorus-based van der Waals heterostructures for mid-infrared light-emission applications

13.07.2020 | Physics and Astronomy

Polarization of Br2 molecule in vanadium oxide cluster cavity and new alkane bromination

13.07.2020 | Life Sciences

Researchers present concept for a new technique to study superheavy elements

13.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>