Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find better prostate cancer indicators

29.03.2006
Identifying alterations in DNA methylation may also be useful in determining cancer progression
Researchers at Mayo Clinic have narrowed the search for effective prostate cancer biomarkers (genetic variations that point to a specific disease or condition), identifying changes in the expression of genes of the whole genome closely correlated to prostate cancer development and progression. They also showed that DNA hypermethylation (DNA modification without changing sequence) plays a significant role in these processes. Results of their study were published in the Feb. 15 issue of Clinical Cancer Research.

"This is good news in an area where our ability to diagnose and predict has previously been less than stellar," said Krishna Donkena, Ph.D., Mayo Clinic urologic researcher. "Our only tool is the PSA test, which has little predictive value. These findings move us much closer to a more accurate test."

The search to identify biomarkers that can be translated into affordable and effective medical tests can be complicated. Prostate cancer causes differential expression of hundreds of different genes, each potentially an indicator of whether a man may get the disease, or already has it. They also may be used to provide information on the development of the cancer, without the need for a painful tumor biopsy.

When seeking to narrow their search to a manageable level, the researchers analyzed 32 cancerous and eight benign patient-tissue samples using genome microarrays representing 33,000 human genes. The information they gleaned from this analysis allowed them to identify 624 differentially-expressed genes between cancerous and benign tissue. They validated these findings in the original 40 tissue samples as well as in 32 additional samples (20 cancerous, 12 benign). The results showed eight genes with significant under-expression and three with significant over-expression, strongly implicating them in prostate cancer development and progression.

Over the years, research has shown that DNA methylation is commonly linked to the development and progression of cancers. This epi-genetic alteration results in silencing or seriously inhibiting gene expression, which in turn lessens the body’s ability to defend against cancer. Current research has not done enough to discover ways to convert this information into a useful medical test, in large part due to the limited number of genes that have been thoroughly studied, and their insufficient sensitivity and specificity (probability of getting a true positive or true negative) for prostate cancer detection.

Dr. Donkena’s team looked at 62 cancerous and 36 benign tissue samples to assess the degree of methylation in the three previously identified under-expressed genes, comparing two known methylated genes. They determined that one gene, PDLIM4, had hypermethylation that could serve as an effective sensitivity marker, accurately detecting prostate cancer 95 percent of the time. The researchers further determined that the combined measurement of a previously known gene, GSTP1, and PDLIM4 improved the detection rate to 98 percent.

Prostate cancer is the second leading cause of cancer death for men in the United States, exceeded only by lung cancer. The sooner a cancer can be diagnosed, the better treatment outcomes will be, so Dr. Donkena and her colleagues are constantly looking for ways to predict who will get prostate cancer, as well as to find better ways to diagnose early or even prevent this disabling and often fatal disease. "We hope that in addition to being a valuable diagnostic and prognostic tool, our discoveries about these genes will help us develop new treatments for prostate cancer," she said.

Other Mayo researchers involved in this study include Karla Ballman, Ph.D.; Bruce Morlan; John Cheville, M.D.; Roxann Neumann; Michael Lieber, M.D.; Donald Tindall, Ph.D.; and Charles Young, Ph.D.

Elizabeth Zimmermann | EurekAlert!
Further information:
http://www.mayoclinic.com
http://spores.nic.nih.gov
http://cancercenter.mayo.edu/mayo/research/prostate_program

More articles from Life Sciences:

nachricht Joining forces for immune research
13.08.2018 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht The “TRiC” to folding actin
10.08.2018 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

Im Focus: A molecular switch may serve as new target point for cancer and diabetes therapies

If certain signaling cascades are misregulated, diseases like cancer, obesity and diabetes may occur. A mechanism recently discovered by scientists at the Leibniz- Forschungsinstitut für Molekulare Pharmakologie (FMP) in Berlin and at the University of Geneva has a crucial influence on such signaling cascades and may be an important key for the future development of therapies against these diseases. The results of the study have just been published in the prestigious scientific journal 'Molecular Cell'.

Cell growth and cell differentiation as well as the release and efficacy of hormones such as insulin depend on the presence of lipids. Lipids are small...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

NRL's sun imaging telescopes fly on NASA Parker Solar Probe

13.08.2018 | Physics and Astronomy

UT-ORNL team makes first particle accelerator beam measurement in six dimensions

13.08.2018 | Physics and Astronomy

ASU astrophysicist helps discover that ultrahot planets have starlike atmospheres

13.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>