Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Evolution of fruit size in tomato

01.07.2008
Mapping the genes that control fruit size in tomato and other Solanaceae

Domesticated tomatoes can be up to 1000 times larger than their wild relatives. How did they get so big? In general, domesticated food plants have larger fruits, heads of grain, tubers, etc, because this is one of the characteristics that early hunter-gatherers chose when foraging for food.

In addition to size, tomatoes have been bred for shape, texture, flavor, shelf-life, and nutrient composition, but it has been difficult to study these traits in tomatoes, because many of them are the result of many genes acting together. These genes are often located in close proximity on chromosomal regions called loci, and regions with groups of genes that influence a particular trait are called quantitative trait loci (QTLs).

When a trait is influenced by one gene, it is much simpler to study, but quantitative traits, like skin and eye color in humans or fruit size in tomatoes, cannot be easily defined just by crossing different individuals. Now, with genome sequencing and genomics tools, chromosomal regions with QTLs can be mapped and cloned more easily than in the past. These genomic maps can also be compared across plant genomes to identify similar genes in other species. With this knowledge, breeders can improve tomato varieties as well as other less well known food plants in the family Solanaceae.

... more about:
»FAS »LOCI »Mutation »Protein »QTL »Solanaceae »Trait

Dr. Steven D. Tanksley and his colleagues, Bin Cong and Luz S. Barrero, are studying QTLs that influence fruit size. Dr. Barrero, of the Corporación Colombiana de Investigación Agropecuaria (CORPOICA), Colombia, will be presenting this work at a symposium on the Biology of Solanaceous Species at the annual meeting of the American Society of Plant Biologists in Mérida, Mexico (June 29, 8:30 AM).

Tomato (Solanum lycopersicum) is a member of the Solanaceae or nightshade family, which also includes potato, eggplant, tobacco, and chili peppers. The center of origin and diversity of tomato and other solanaceous species is in the northern Andes, where endemic wild populations of these species still grow. Tanksley and his colleagues have been employing the data emerging from the International Tomato Genome Sequencing Project as well as the tools of structural genomics to clone and characterize the major gene and QTL responsible for extreme fruit size during tomato domestication—fas.

The first QTL, fw2.2, was the first ever cloned in plants and may have been the site of one of the earliest mutations in tomato that led to its selection by humans and subsequent domestication. The size of tomato fruit can vary up to 30% as a result of variation at this locus alone. Cloning and sequencing of this locus reveals that the wild type protein codes for a repressor of cell division. When the control sequence is mutated, the repressor protein is not expressed or only very little, leading to higher cell division during fruit development and, consequently, larger fruits.

However, fw2.2 and associated genes related to cell-cycle control and cell division are not solely responsible for extreme fruit size. Two other loci-- locule-number and fasciated (fas)-- influence fruit size indirectly by affecting the number of carpels, the female parts of the flower that will become seed chambers in the fruit. Most wild tomatoes have only 2-4 locules (ovary chambers) while domesticated varieties can have 8 or more, and it appears that increase in locule number can increase fruit size by 50%. The data indicate that, of the two loci, fas has the larger effect. Tanksley and his colleagues used positional cloning to isolate the fas locus.

Sequencing suggested that the fas gene encodes a protein (YABBY-like transcription factor) that controls transcription of DNA into RNA as the first step of gene expression. It also revealed that there were no changes in the protein coding region of the gene but rather the mutation consisted of an insertion in the first intron, which is a non-coding sequence embedded within the protein coding sequence. Although introns are not part of a gene's protein code and are removed from the RNA sequence before translation into proteins, they are nevertheless structurally and functionally important, as demonstrated in this locus. The presence of an insertion in this intron reduces expression of the fas gene. The scientists looked at where and when the gene is expressed and found it dramatically reduced in developing flower buds in plants with high locule numbers.

Further comparisons of this locus across different tomato cultivars, including wild varieties, which turned out not to contain the mutation, suggests the mutation occurred relatively recently in tomato domestication and spread rapidly throughout modern tomatoes as a result of selection for extreme fruit size. Comparative genomics tools are being applied in both well-known and obscure solanaceous species. Conservation of genes and loci across a number of these species suggests that the knowledge gained from these efforts can also be applied in crop and yield improvement for other members of the Solanaceae.

Dr. Luz Barrero | EurekAlert!
Further information:
http://www.corpoica.org.co
http://www.aspb.org

Further reports about: FAS LOCI Mutation Protein QTL Solanaceae Trait

More articles from Life Sciences:

nachricht Communication between neural networks
17.12.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Neurons migrate in the nascent brain as if on rails
17.12.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Formed to Meet Customers’ Needs – New Laser Beams for Glass Processing

17.12.2018 | Physics and Astronomy

Preserving soil quality in the long term

17.12.2018 | Architecture and Construction

New RNA sequencing strategy provides insight into microbiomes

17.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>