Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Relay station in the brain controls our movements

15.05.2019

The relay station of the brain, the substantia nigra consists of different types of nerve cells and is responsible for controlling the execution of diverse movements. Researchers at the University of Basel’s Biozentrum have now characterized two of these cell populations more precisely and has been able to assign an exact function to each of them. The results of the study have now been published in Cell Reports.

Whether we move our arms, legs or the entire body, every movement is centrally controlled by our brain. Different brain regions and neuronal networks play an essential role in this process. This includes the substantia nigra, which has been minimally investigated so far.


Two cell populations in the substantia nigra that are responsible for different aspects of locomotion.

Image: University of Basel, Biozentrum

Like a relay station, this region receives and distributes signals in order to appropriately orchestrate the execution of a desired movement. Using a mouse model, Prof. Kelly Tan's research group at the Biozentrum, University of Basel, has now identified two cell populations in the substantia nigra that are responsible for different aspects of locomotion.

Correct movement thanks to teamwork of neuron populations

The research team investigated the substantia nigra anatomically, genetically and functionally. It became apparent that this region consists of several different types of nerve cells.

The researchers could identify two of the populations and describe them in more detail. While one population is responsible for initiating a motor task, the second population ensures the continuity of the desired movement.

“The heterogeneity of neuronal populations in the brain, also in the substantia nigra, is a well acknowledged concept. In our study, not only we decipher the function of two nerve cell groups, but we also show that they work together to produce correct locomotion,” says Giorgio Rizzi, first author of the study.

Signals for movement control are interrupted in Parkinson’s disease

The findings of the study are also important in regard to Parkinson’s disease. Patients suffer from motor control abnormalities because certain nerve cells degenerate.

“Interestingly these cells are interaction partners of the population we identify as essential for movement initiation. This means that the signals of the cell population are no longer received and transmitted; and this dysfunction may underlie the movement initiation impairment symptom observed in Parkinson’s disease patients,” says Kelly Tan.

In the future, the research team aims to continue identifying other cell populations of the substantia nigra and elucidate their motor functions. “With regard to Parkinson's disease, we will assess how each network is altered as a result of the disease and how this affects movement.

If we understand the circuit modifications, we may find a way to tackle this neurodegenerative disorder and relieve the symptoms of Parkinson's disease patients,” states Kelly Tan.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Kelly Tan, University of Basel, Biozentrum, Tel. +41 61 207 16 26, email: kelly.tan@unibas.ch

Originalpublikation:

Giorgio Rizzi and Kelly R. Tan
Synergistic Nigral Output Pathways Shape Movement
Cell Reports (2019), doi: 10.1016/j.celrep.2019.04.068
https://www.cell.com/cell-reports/fulltext/S2211-1247(19)30541-8

Heike Sacher | Universität Basel
Further information:
http://www.unibas.ch

More articles from Life Sciences:

nachricht Atomic layer 3D printing
28.01.2020 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Kiss and run: How cells sort and recycle their components
28.01.2020 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Integrate Micro Chips for electronic Skin

Researchers from Dresden and Osaka present the first fully integrated flexible electronics made of magnetic sensors and organic circuits which opens the path towards the development of electronic skin.

Human skin is a fascinating and multifunctional organ with unique properties originating from its flexible and compliant nature. It allows for interfacing with...

Im Focus: Dresden researchers discover resistance mechanism in aggressive cancer

Protease blocks guardian function against uncontrolled cell division

Researchers of the Carl Gustav Carus University Hospital Dresden at the National Center for Tumor Diseases Dresden (NCT/UCC), together with an international...

Im Focus: New roles found for Huntington's disease protein

Crucial role in synapse formation could be new avenue toward treatment

A Duke University research team has identified a new function of a gene called huntingtin, a mutation of which underlies the progressive neurodegenerative...

Im Focus: A new look at 'strange metals'

For years, a new synthesis method has been developed at TU Wien (Vienna) to unlock the secrets of "strange metals". Now a breakthrough has been achieved. The results have been published in "Science".

Superconductors allow electrical current to flow without any resistance - but only below a certain critical temperature. Many materials have to be cooled down...

Im Focus: Programmable nests for cells

KIT researchers develop novel composites of DNA, silica particles, and carbon nanotubes -- Properties can be tailored to various applications

Using DNA, smallest silica particles, and carbon nanotubes, researchers of Karlsruhe Institute of Technology (KIT) developed novel programmable materials....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

 
Latest News

The fight against multi-resistant pathogens

28.01.2020 | Health and Medicine

Atomic layer 3D printing

28.01.2020 | Life Sciences

Nanocontainers introduced into the nucleus of living cells

28.01.2020 | Interdisciplinary Research

VideoLinks
Science & Research
Overview of more VideoLinks >>>