Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Relay station in the brain controls our movements

15.05.2019

The relay station of the brain, the substantia nigra consists of different types of nerve cells and is responsible for controlling the execution of diverse movements. Researchers at the University of Basel’s Biozentrum have now characterized two of these cell populations more precisely and has been able to assign an exact function to each of them. The results of the study have now been published in Cell Reports.

Whether we move our arms, legs or the entire body, every movement is centrally controlled by our brain. Different brain regions and neuronal networks play an essential role in this process. This includes the substantia nigra, which has been minimally investigated so far.


Two cell populations in the substantia nigra that are responsible for different aspects of locomotion.

Image: University of Basel, Biozentrum

Like a relay station, this region receives and distributes signals in order to appropriately orchestrate the execution of a desired movement. Using a mouse model, Prof. Kelly Tan's research group at the Biozentrum, University of Basel, has now identified two cell populations in the substantia nigra that are responsible for different aspects of locomotion.

Correct movement thanks to teamwork of neuron populations

The research team investigated the substantia nigra anatomically, genetically and functionally. It became apparent that this region consists of several different types of nerve cells.

The researchers could identify two of the populations and describe them in more detail. While one population is responsible for initiating a motor task, the second population ensures the continuity of the desired movement.

“The heterogeneity of neuronal populations in the brain, also in the substantia nigra, is a well acknowledged concept. In our study, not only we decipher the function of two nerve cell groups, but we also show that they work together to produce correct locomotion,” says Giorgio Rizzi, first author of the study.

Signals for movement control are interrupted in Parkinson’s disease

The findings of the study are also important in regard to Parkinson’s disease. Patients suffer from motor control abnormalities because certain nerve cells degenerate.

“Interestingly these cells are interaction partners of the population we identify as essential for movement initiation. This means that the signals of the cell population are no longer received and transmitted; and this dysfunction may underlie the movement initiation impairment symptom observed in Parkinson’s disease patients,” says Kelly Tan.

In the future, the research team aims to continue identifying other cell populations of the substantia nigra and elucidate their motor functions. “With regard to Parkinson's disease, we will assess how each network is altered as a result of the disease and how this affects movement.

If we understand the circuit modifications, we may find a way to tackle this neurodegenerative disorder and relieve the symptoms of Parkinson's disease patients,” states Kelly Tan.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Kelly Tan, University of Basel, Biozentrum, Tel. +41 61 207 16 26, email: kelly.tan@unibas.ch

Originalpublikation:

Giorgio Rizzi and Kelly R. Tan
Synergistic Nigral Output Pathways Shape Movement
Cell Reports (2019), doi: 10.1016/j.celrep.2019.04.068
https://www.cell.com/cell-reports/fulltext/S2211-1247(19)30541-8

Heike Sacher | Universität Basel
Further information:
http://www.unibas.ch

More articles from Life Sciences:

nachricht Predicting a protein's behavior from its appearance
10.12.2019 | Ecole Polytechnique Fédérale de Lausanne

nachricht Could dark carbon be hiding the true scale of ocean 'dead zones'?
10.12.2019 | University of Plymouth

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

Im Focus: Electronic map reveals 'rules of the road' in superconductor

Band structure map exposes iron selenide's enigmatic electronic signature

Using a clever technique that causes unruly crystals of iron selenide to snap into alignment, Rice University physicists have drawn a detailed map that reveals...

Im Focus: Developing a digital twin

University of Texas and MIT researchers create virtual UAVs that can predict vehicle health, enable autonomous decision-making

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location...

Im Focus: The coldest reaction

With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction

The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that...

Im Focus: How do scars form? Fascia function as a repository of mobile scar tissue

Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.

Fibroblasts kit - ready to heal wounds

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

City research draws on Formula 1 technology for the construction of skyscrapers

10.12.2019 | Architecture and Construction

Reorganizing a computer chip: Transistors can now both process and store information

10.12.2019 | Information Technology

Could dark carbon be hiding the true scale of ocean 'dead zones'?

10.12.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>