Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quality Control in Cells

19.09.2019

Heidelberg researchers investigate key component in bacteria

A protective protein that can detect newly-made incomplete and hence potentially toxic protein chains in higher cells is found to have a relative in bacteria. There, the protein also plays a central role in quality control which ensures that defective proteins are degraded.


Das Bild zeigt eine Falschfarben-Darstellung von Kolonien von Bacillus subtilis-Bakterien, die entweder genetisch unverändert sind oder einzelne oder kombinierte Mutationen tragen, die ihre Qualitätskontrollprozesse für Proteine inaktivieren (darunter auch RQC). Dieser Wachstumstest zeigt in jeder Zeile von links nach rechts, dass die Bakterienzellen mit den kombinierten Mutationen unter bestimmten Bedingungen immer schlechter wachsen. | © C. Joazeiro

The functional mechanism of these evolutionarily related Rqc2 proteins thus acts as key quality control component and must therefore have already existed several billion years ago in the so-called last universal common ancestor.

Scientists at the Center for Molecular Biology of Heidelberg University (ZMBH) have reached this conclusion based on their experimental study of the function of the bacterial Rqc2 relative.

In cells, incomplete protein chains originate regularly due to problems during their synthesis. Such aberrant chains are potentially toxic to cells and must be eliminated.

In cells of eukaryotic organisms – such as fungi, plants and animals – a quality control process, known as Ribosome-associated Quality Control (RQC), leads to the disposal of those defective proteins.

A key component of RQC is the Rqc2 protein, which is responsible for sensing the aberrant protein chains, and for recruiting an enzyme that labels the defective protein for degradation. Interestingly, bacteria also have been known to possess proteins similar to the Rqc2 protein of higher organisms. Until now, however, these proteins were thought to have a different function in bacteria.

Using Bacillus subtilis bacteria, the research team at the ZMBH led by Prof. Dr Claudio Joazeiro has now been able to experimentally demonstrate that their Rqc2 protein is also able to recognise incompletely synthesised proteins.

However, unlike in higher cells, the Rqc2 protein in bacteria itself marks the aberrant chains; it appends them with a poly-alanine chain to trigger their elimination by the bacterial disposal system. The researchers also showed that this is an important protective mechanism against the cellular stress caused by defective protein production.

The Heidelberg research results demonstrate that the evolutionarily related Rqc2 proteins in bacteria and higher cells perform this quality control function in a similar manner. This led the scientists to conclude that this mechanism must have already existed several billion years ago in the so-called last universal common ancestor, and that this protective function is among the most elemental and essential processes of all cells.

In fact, Prof. Joazeiro had previously shown that a mutation preventing the process from functioning causes degeneration of neuronal cells in a similar manner to amyotrophic lateral sclerosis (ALS), a devastating human disease.

Researchers from Berlin, Marburg, and the USA were also involved in the research, which was supported by the German Research Foundation, among others within the framework of the Collaborative Research Centre “Cellular Surveillance and Damage Response” (CRC 1036). The results of their research were published in “Cell”.

Contact:
Heidelberg University
Communications and Marketing
Press Office, phone +49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Wissenschaftliche Ansprechpartner:

Prof. Dr Claudio Joazeiro
Center for Molecular Biology of Heidelberg University
Phone +49 6221 54-6858
c.joazeiro@zmbh.uni-heidelberg.de

Originalpublikation:

I. Lytvynenko, H. Paternoga, A. Thrun, A. Balke, T.A. Müller, C.H. Chiang, K. Nagler, G. Tsaprailis, S. Anders, I. Bischofs, J.A. Maupin-Furlow, C.M.T. Spahn, C. A.P. Joazeiro: Alanine Tails Signal Proteolysis in Bacterial Ribosome-Associated Quality Control, Cell 178, 76–90, https://doi.org/10.1016/j.cell.2019.05.002

Weitere Informationen:

http://www.zmbh.uni-heidelberg.de/Joazeiro/default.shtml

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-heidelberg.de

More articles from Life Sciences:

nachricht Colorectal cancer: Increased life expectancy thanks to individualised therapies
20.02.2020 | Christian-Albrechts-Universität zu Kiel

nachricht Sweet beaks: What Galapagos finches and marine bacteria have in common
20.02.2020 | Max-Planck-Institut für Marine Mikrobiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Journey to the center of Mars

20.02.2020 | Physics and Astronomy

Laser writing enables practical flat optics and data storage in glass

20.02.2020 | Physics and Astronomy

New graphene-based metasurface capable of independent amplitude and phase control of light

20.02.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>