Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Organisms with small genomes, cells found thriving in hot soils

06.11.2018

As our planet warms, what life will survive and thrive? If the coal fire-fueled soils around Centralia, Pennsylvania, are any indication, organisms with smaller genomes and cells may do well in the future.

The results of a new Michigan State University study, published in the current issue of Nature Microbiology, represent the first time such microbes have been found afield.


As our planet warms, what life will survive and thrive? If the coal fire-fueled soils around Centralia, Pennsylvania, are any indication, organisms with smaller genomes and cells may do well in the future.

Courtesy of MSU

The research clearly shows that, for soil microbiomes, hot temperatures result in both smaller genomes on average and also smaller cell sizes, said Ashley Shade, MSU microbial biologist, and the study's lead author.

This isn't the case of simply one microbe embracing an economical approach, either; the majority of populations living in the steaming ground have these same traits.

"This isn't an evolutionary study; we are seeing organisms that are competitive in the hot environment when they already have these traits," Shade said. "The populations living nearby in the cooler, ambient temperature zones are different than the organisms living in the thermal areas."

In an interesting twist, the tiny organisms' genome sizes resemble those found in a completely different region of the world - those found in Arctic permafrost.

"In a comparison with other soils, we found that the average genome sizes in hot soils were most similar to those in ancient permafrost," said Shade, regarding her National Science Foundation-funded research.

"Our working hypothesis is that these thermo-tolerant cells were not undergoing active genome reduction, but instead had never experienced substantial genome expansion because they are less derived from an ancestral state."

Soil is one of the world's most-complex, most-diverse habitats. A single teaspoon may hold millions of microbes - active and dormant. In fact, it's the dormant microbes that have attracted the attention of the research team, as they appear to be the leading potential source of these thermophile organisms in Pennsylvania.

The Centralia coal fire has been burning since 1962. Ignition of the large, underground coal seams has devastated area communities but created an unworldly laboratory, replete with abandoned roads, decrepit structures and steaming vents that reek of rotten eggs. For Shade's research, she focused on microbes living across a temperature gradient, spanning from normal to thermal.

The thermophile microbes Shade's team discovered don't appear to have evolved from their ambient-temperature-loving neighbors.

Also, it doesn't appear that they were dropped in from an outside source, like through the wind. That leaves dormant microbes, ones simply biding their time for the optimal conditions to animate, as the prime culprit to their origin.

"Centralia is a field environment in which we can observe organisms getting hit with a sledgehammer," Shade said.

"Traveling there allows us to probe extreme conditions - ones that caused a turnover in the entire community toward small genomes. The gradient happens in the same environment, in the same soils."

The scenario leaves the researchers wondering, what's the minimum requirement for cell and genome? What other dormant microbes in soil, water or our gut are awaiting to be awakened and identified?

For the next steps of this research, Shade's team will dive deeper into the source of these microbes. The researchers also will examine the populations living on the gradient more closely, identifying areas of overlap and seeing where and how the different populations transition and compete as the fire heats up.

MSU scientists contributing to this research include graduate students Jackson Sorensen and Taylor Dunivin. Tammy Tobin, with Susquehanna University, also was part of this study.

Michigan State University has been working to advance the common good in uncommon ways for 160 years. One of the top research universities in the world, MSU focuses its vast resources on creating solutions to some of the world's most pressing challenges, while providing life-changing opportunities to a diverse and inclusive academic community through more than 200 programs of study in 17 degree-granting colleges.

For MSU news on the Web, go to MSUToday. Follow MSU News on Twitter at twitter.com/MSUnews.

Layne Cameron | EurekAlert!
Further information:
http://go.msu.edu/YnH
http://dx.doi.org/10.1038/s41564-018-0276-6

More articles from Life Sciences:

nachricht Small Genetic Differences Turn Plants into Better Teams
06.11.2018 | Universität Zürich

nachricht Rutgers researchers advance stem cell therapy with biodegradable scaffold
05.11.2018 | Rutgers University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

Im Focus: Nanorobots propel through the eye

Scientists developed specially coated nanometer-sized vehicles that can be actively moved through dense tissue like the vitreous of the eye. So far, the transport of nano-vehicles has only been demonstrated in model systems or biological fluids, but not in real tissue. The work was published in the journal Science Advances and constitutes one step further towards nanorobots becoming minimally-invasive tools for precisely delivering medicine to where it is needed.

Researchers of the “Micro, Nano and Molecular Systems” Lab at the Max Planck Institute for Intelligent Systems in Stuttgart, together with an international...

Im Focus: Dissecting a molecular toolbox driving motility and infection

HZI scientists establish how the cytoskeleton is regulated and manipulated

Various bacterial pathogens stimulate their hosts to engulf them during infection processes, allowing the bacteria to gain access to the host cell cytoplasm....

Im Focus: Electronic Highways on the Nanoscale

For the first time, the targeted functionalization of carbon-based nanostructures allows the direct mapping of current paths, thereby paving the way for novel quantum devices

Computers are getting faster and increasingly powerful. However, at the same time computing requires noticeably more energy, which is almost completely...

Im Focus: Biomarker discovered for most common form of heart failure

Cedars-Sinai discovery may aid doctors in diagnosing at-risk patients before symptoms appear

A team led by a Cedars-Sinai physician-scientist has discovered a biomarker--a protein found in the blood--for the most common type of heart failure, a new...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

 
Latest News

High-performance solar cells: physicists from Halle grow stable perovskite layers

06.11.2018 | Physics and Astronomy

Mandibular movement monitoring may help improve oral sleep apnea devices

06.11.2018 | Studies and Analyses

Medica 2018: New software for a more efficient planning of minimally invasive surgery

06.11.2018 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>