Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Observing changes in the chirality of molecules in real time

15.11.2019

Some molecules can exist in two mirror-image forms, similar to our hands. Although such so-called enantiomers have almost identical physical properties, they are not the same.

The fact that they behave to each other like image and mirror image is called chirality (from the Greek cheiro for hand). In nature, however, often only one enantiomer exists, for example in amino acids, DNA or sugars.


Chiral molecules - compounds that are mirror images of each other -- play an important role in biological processes and in chemical synthesis. Chemists at ETH Zurich have now succeeded for the first time in using ultrafast laser pulses to observe changes in chirality during a chemical reaction in real time.

Credit: ETH Zurich / Joachim Schnabl

The enzymes that produce these molecules are themselves chiral and therefore only produce one type of enantiomer.

This preference of nature has far-reaching consequences. For example, enantiomers of drugs can have completely different modes of action, such as being toxic or the can be completely ineffective.

The food and cosmetics industry are also interested in chirality because fragrances and flavors are perceived differently depending on the enantiomer. Chemists therefore often try to produce only one enantiomer or, if this is not possible, to separate mixtures of enantiomers.

To distinguish enantiomers from each other, chemists use polarized light because the enantiomers rotate the plane of polarized light in opposite directions.

The breaking or formation of chemical bonds takes place on a very short time scale, namely within a few femtoseconds (quadrillionths of a second). With the existing measurements, it has not been possible to monitor chirality in such short periods of time and thus follow a chemical process.

Understanding the reactions of chiral molecules

Researchers led by Hans Jakob Wörner, Professor at the Department of Chemistry and Applied Biosciences, have now developed a new method for observing changes in chirality directly during a chemical reaction in real time.

The researchers have generated femtosecond laser pulses, with tailor-made temporally varying polarization, which are themselves chiral. This new approach enabled them for the first time to simultaneously achieve the necessary sensitivity to chirality and time resolution.

In their experiment, which the scientists reported on in the scientific journal PNAS, they excited the gaseous chiral molecule (R)-2-iodobutane with two ultra-short ultraviolet laser pulses. The excitation caused the bond between carbon and iodine to break.

In this process, the 2-butyl radical is initially formed in a chiral conformation, which rapidly loses its chirality. With the help of the newly developed polarized laser pulses, they were then able to follow live how the chirality disappears after the bond break due to the cleavage of the iodine atom.

This new method can also be applied to the liquid or solid phase to observe the extremely rapid changes in molecular chirality, as the scientists say. The possibility of making chiral photochemical processes directly accessible on such short time scales now makes it possible to better understand the reactions of chiral molecules. This could facilitate the development of new or improved methods for the production of enantiomerically pure compounds.

###

Video: https://youtu.be/0HeyShXSuWE Temporal evolution of molecular chirality during photodissociation of (R)-2-iodobutane. (Video: ETH Zurich / Joachim Schnabl)

Reference

Baykusheva D, Zindel D, Svoboda V, Bommeli E, Ochsner M, Tehlar A, Wörner HJ: Real-time probing of chirality during a chemical reaction, PNAS 2019, doi: 10.1073/pnas.1907189116 [http://dx.doi.org/10.1073/pnas.1907189116]

Media Contact

Prof. Dr. Hans Jakob Wörner
hansjakob.woerner@phys.chem.ethz.ch
41-446-334-412

 @ETH_en

http://www.ethz.ch/index_EN 

Prof. Dr. Hans Jakob Wörner | EurekAlert!
Further information:
https://ethz.ch/en/news-and-events/eth-news/news/2019/11/observing-changes-in-chirality-in-real-time.html
http://dx.doi.org/10.1073/pnas.1907189116

Further reports about: ETH Zurich PNAS chiral molecules iodine laser pulses polarized light

More articles from Life Sciences:

nachricht Programmable nests for cells
20.01.2020 | Karlsruher Institut für Technologie (KIT)

nachricht Obesity, heart disease or diabetes could be transmissible
20.01.2020 | Christian-Albrechts-Universität zu Kiel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Programmable nests for cells

KIT researchers develop novel composites of DNA, silica particles, and carbon nanotubes -- Properties can be tailored to various applications

Using DNA, smallest silica particles, and carbon nanotubes, researchers of Karlsruhe Institute of Technology (KIT) developed novel programmable materials....

Im Focus: Miniature double glazing: Material developed which is heat-insulating and heat-conducting at the same time

Styrofoam or copper - both materials have very different properties with regard to their ability to conduct heat. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz and the University of Bayreuth have now jointly developed and characterized a novel, extremely thin and transparent material that has different thermal conduction properties depending on the direction. While it can conduct heat extremely well in one direction, it shows good thermal insulation in the other direction.

Thermal insulation and thermal conduction play a crucial role in our everyday lives - from computer processors, where it is important to dissipate heat as...

Im Focus: Fraunhofer IAF establishes an application laboratory for quantum sensors

In order to advance the transfer of research developments from the field of quantum sensor technology into industrial applications, an application laboratory is being established at Fraunhofer IAF. This will enable interested companies and especially regional SMEs and start-ups to evaluate the innovation potential of quantum sensors for their specific requirements. Both the state of Baden-Württemberg and the Fraunhofer-Gesellschaft are supporting the four-year project with one million euros each.

The application laboratory is being set up as part of the Fraunhofer lighthouse project »QMag«, short for quantum magnetometry. In this project, researchers...

Im Focus: How Cells Assemble Their Skeleton

Researchers study the formation of microtubules

Microtubules, filamentous structures within the cell, are required for many important processes, including cell division and intracellular transport. A...

Im Focus: World Premiere in Zurich: Machine keeps human livers alive for one week outside of the body

Researchers from the University Hospital Zurich, ETH Zurich, Wyss Zurich and the University of Zurich have developed a machine that repairs injured human livers and keep them alive outside the body for one week. This breakthrough may increase the number of available organs for transplantation saving many lives of patients with severe liver diseases or cancer.

Until now, livers could be stored safely outside the body for only a few hours. With the novel perfusion technology, livers - and even injured livers - can now...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

 
Latest News

Molecules move faster on a rough terrain

20.01.2020 | Physics and Astronomy

Spider-Man-style robotic graspers defy gravity

20.01.2020 | Physics and Astronomy

Laser diode emits deep UV light

20.01.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>