Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technique for in-cell distance determination

19.03.2019

Researchers from the University of Konstanz, Bielefeld University and ETH Zurich demonstrate for the first time that the pulsed EPR technique RIDME (relaxation-induced dipolar modulation enhancement) can be used for in-cell distance determination in biomacromolecules. Applied within the cell, RIDME improves significantly on conventional double electron–electron resonance (DEER) measurements.

In a joint paper which has just been published in The Journal of Physical Chemistry Letters, researchers from the University of Konstanz, Bielefeld University and ETH Zurich demonstrate for the first time that the electron paramagnetic resonance (EPR) technique RIDME (relaxation-induced dipolar modulation enhancement) can be applied to determine distances between gadolinium(III)-based spin labels in cells.


For the first time, the pulsed EPR technique RIDME (relaxation induced dipolar modulation enhancement) was utilized for distance measurements inside cells.

Research group Professor Malte Drescher, University of Konstanz

In-cell distance determination by electron paramagnetic resonance (EPR) reveals essential structural information about biomacromolecules, including their conformation as well as folding and unfolding processes.

Conventional methods for in-cell determination of distances such as double electron–electron resonance (DEER or PELDOR) are principally much less sensitive than RIDME, provide up to five times smaller modulation depths, have certain limitations with regard to excitation bandwidth and are technically more demanding.

As a single-frequency technique which makes use of relaxation-induced spin flips to determine the distance between two spin labels, i.e. between two unpaired electrons, RIDME overcomes all of these disadvantages.

What is special about this technique is that it allows the researchers to work with molecules under native conditions, as Professor Malte Drescher and lead author Dr Mykhailo Azarkh, both from the University of Konstanz, emphasize: “We started out by analysing the conformation of a protein inside the cell.

With less sensitive techniques, we are forced to insert and tag a lot of protein to be able to observe it, which is not at all what happens in nature. Ideally, we want to be working with concentrations that are physiologically relevant. Since RIDME is much more sensitive than DEER, it allows us to do just that. We are now in a position to address issues that we would not otherwise be able to address”.

The performance of in-cell RIDME was assessed at Q-band using stiff molecular rulers labelled with Gd(III)-PyMTA and microjointed into Xenopus laevis (African clawed frog) oocytes. In other words, the researchers used a model system where the precise distance between the spin labels was already known, allowing them to verify the RIDME measurements.

The resulting paper entitled “Gd(III)–Gd(III) Relaxation-Induced Dipolar Modulation Enhancement for In-Cell Electron Paramagnetic Resonance Distance Determination” was published online in The Journal of Physical Chemistry Letters on 13.03.2019.

In-cell RIDME distance determination was developed and tested as part of the on-going ERC-funded project “SPICE – Spectroscopy in cells”, for which Malte Drescher, Heisenberg Professor for Spectroscopy of Complex Systems at the University of Konstanz, and his research team were recognized with an ERC Consolidator Grant worth approximately two million euros in 2017. Their goal is to develop new approaches to spectroscopy that allow them to explore larger and more complex biological structures at the molecular level of the cell.

The next step in this line of research will be to identify other suitable spin labels and to develop RIDME for application in molecules where the distance between the spin labels is unknown. A particular focus of attention will be on molecules associated with neuro-degenerative diseases such as Alzheimer’s and Parkinson’s.

Facts:
• Original publication: Mykhailo Azarkh, Anna Bieber, Mian Qi, Jörg W. A. Fischer, Maxim Yulikov, Adelheid Godt, Malte Drescher. Gd(III)–Gd(III) Relaxation-Induced Dipolar Modulation Enhancement for In-Cell Electron Paramagnetic Resonance Distance Determination. J. Phys. Chem. Lett. 2019, 10, pp 1477–1481. DOI: https://doi.org/10.1021/acs.jpclett.9b00340.
• Researchers from the University of Konstanz, Bielefeld University and ETH Zurich demonstrate for the first time that the EPR technique RIDME (relaxation-induced dipolar modulation enhancement) can be used for in-cell determination of distances in biomacromolecules.
• As opposed to other techniques, such as double electron–electron resonance (DEER), RIDME is technically less demanding, has no limitations with respect to the excitation bandwidth and provides five times larger modulation depth. There are no artefacts caused by pseudosecular terms.
• The results were generated as part of the on-going ERC project SPICE (“Spectroscopy in cells”), for which Professor Malte Drescher, Heisenberg Professor for Spectroscopy of Complex Systems at the University of Konstanz, received an ERC Consolidator Grant 2017 in the amount of approximately two million euros for a period of five years (2018-2022).

Note to editors:
An image is available for download here: https://cms.uni-konstanz.de/fileadmin/pi/fileserver/2019/Bilder/New_technique_fo...
Caption: In-cell distance determination by EPR reveals essential structural information about biomacromolecules under native conditions. For the first time, the pulsed EPR technique RIDME (relaxation-induced dipolar modulation enhancement) was utilized for distance measurements inside cells. It provides a five-times improved sensitivity as compared to the previously used double electron-electron resonance approach.
Image credit: Research group Professor Malte Drescher, University of Konstanz

Contact:
University of Konstanz
Communications and Marketing
Phone: + 49 7531 88-3603
Email: kum@uni-konstanz.de

- uni.kn/en

Originalpublikation:

Mykhailo Azarkh, Anna Bieber, Mian Qi, Jörg W. A. Fischer, Maxim Yulikov, Adelheid Godt, Malte Drescher. Gd(III)–Gd(III) Relaxation-Induced Dipolar Modulation Enhancement for In-Cell Electron Paramagnetic Resonance Distance Determination. J. Phys. Chem. Lett. 2019, 10, pp 1477–1481. DOI: https://doi.org/10.1021/acs.jpclett.9b00340.

Julia Wandt | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-konstanz.de

Further reports about: Consolidator Distance EPR ERC ETH Zurich Electron Modulation Paramagnetic biomacromolecules determination

More articles from Life Sciences:

nachricht New eDNA technology used to quickly assess coral reefs
18.04.2019 | University of Hawaii at Manoa

nachricht New automated biological-sample analysis systems to accelerate disease detection
18.04.2019 | Polytechnique Montréal

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>