Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New self-assembled monolayer is resistant to air


Buckyballs can pave the way for molecular electronics

Organic self-assembled monolayers (SAMs) have been around for over forty years. The most widely used form is based on thiols, bound to a metal surface. However, although the thiol SAMs are very versatile, they are also chemically unstable. Exposure of these monolayers to air will lead to oxidation and breakdown within a single day.

This is an artist's impression of a self-assembled layer of functionalized buckyballs. The fullerenes attach to the metal surface, and the glycol-ether tails induce self-assembly of a bilayer. The upper half can be replaced by a different compound, when this is also functionalized with glycol-ether. The paper describes how the upper layer is replaced by spiropyrans (molecules that will change shape when exposed to UV light) connected to a glycol-ether tail.

Credit: Xinkai Qiu, Stratingh Institute for Chemistry, University of Groningen

University of Groningen scientists have now created SAMs using buckyballs functionalized with 'tails' of ethylene glycol. These molecules produce self-assembled monolayers that have all the properties of thiol SAMs but remain chemically unchanged for several weeks when exposed to air. This robustness makes them much easier to use in research and in devices.

An article about these new SAMs was published in Nature Materials on 30 January.

Self-assembled monolayers are dynamic structures, explains University of Groningen Associate Professor of Organic-Materials Chemistry and Devices Ryan Chiechi: 'These monolayers self-repair and the molecules will continually find the most efficient packing. Furthermore, all processes are reversible, and it is possible to change their composition.'

This distinguishes SAMs from other monolayers that are used to functionalize surfaces. 'These are often very stable, but they don't self-assemble and lack the dynamics of SAMs.'

Quantum tunneling

SAMs based on the binding of thiols (sulfur-containing groups) to metal are widely studied and used. Applications of SAMs range from the control of wetting of- or adhesion to surfaces, creating chemical resistance in lithography, to sensor production or nanofabrication. The monolayers can also be used to produce molecular electronics. Chiechi: 'Electric current will pass through such a monolayer by quantum tunneling. And small modifications to the molecular layer can alter the tunneling properties. Through such chemical tailoring, it is possible to create new types of electronics.'

However, the most widely used thiol-based SAMs are sensitive to oxidization when exposed to air. Without protection, they will not last a single day. 'This means that you need all kinds of equipment to keep the air out when working with these SAMs for molecular electronics,' explains Chiechi. 'It also makes it difficult to use them in a biological context.'

Functionalized buckyballs

This is where the new buckyball-based SAMs come in. In a joint effort, scientists from the Stratingh Institute for Chemistry and the Zernike Institute for Advanced Materials at the University of Groningen have discovered and characterized the properties of glycol-ether functionalized fullerenes. The buckyballs adhere to metal surfaces even stronger than thiols.

The glycol-ether tails are polar and in organic solvents, this induces the formation of a bilayer. 'You simply put the metal in a solution of these functionalized buckyballs and the bilayer will form through self-assembly,' says Chiechi. Furthermore, SAMs prepared in this way are very resistant to oxidization: when left exposed to air, they will remain intact for at least 30 days.

'Our results strongly suggest that the tails of the molecules are intertwined. This results in a stable and very dynamic structure where molecules are free to move, which is typical for a SAM,' says Chiechi. The outer layer can be replaced by adding other functionalized groups. Chiechi and his colleagues added spiropyrans (molecules that will change shape when exposed to UV light) connected to a glycol-ether tail.

By placing an electrode on the outer layer, tunneling through the SAM was measured. The scientists showed that changing the shape of the spiropyran moiety with light also changed the conductance by several orders of magnitude.

Molecular electronics

There are other alternatives for thiol-based SAMs but they all have limitations. 'We believe that our SAMs have all the properties of thiol-based SAMs, with resistance to degradation by air as a large bonus', concludes Chiechi. 'Furthermore, we have shown that our system can be used to create molecular electronics.'

And it also appears to be a very useful platform for studying the behavior of SAMs. 'You can do this on your lab bench without any need for protection.' Chiechi thinks that his system might be useful for studying the behavior of bilayers, including the lipid bilayers that form cell membranes.

The ability to change the composition of the SAMs opens up interesting applications in molecular electronics. Chiechi: 'This might be used to create a topological computer architecture, for neuromorphic computing.' Changes in the composition of the SAM could produce a memristor and possibly a system for stochastic computing, which uses the probabilities of 1s and 0s to represent numbers in a bitstream.

'This could be represented by the fraction of one type of molecule in the SAM.' Before this can become a reality, however, more work will have to be done, for example, to understand why the glycol-ether phase is such an efficient tunneling medium.


Reference: Xinkai Qiu, Viktor Ivasyshyn, Li Qiu, Mihaela Enache, Jingjin Dong, Sylvia Rousseva, Giuseppe Portale, Meike Stöhr, Jan C. Hummelen, and Ryan C. Chiechi: Thiol-free self-assembled oligoethylene glycols enable robust air-stable molecular electronics. Nature Materials 20 January 2020.

Simple Science Summary

Many organic compounds will self-assemble on a surface into structures of just one molecular layer, a so-called self-assembled monolayer or SAM. These SAMS are being used by scientists for different purposes. Most SAMs are based on molecules that bind to the surface with sulfur-containing chemical groups (thiols), but these form complexes that are chemically unstable in air. Organic chemists from the University of Groningen created SAMs using carbon buckyballs functionalized with 'tails' of ethylene glycol. These molecules produce self-assembled monolayers that have all the properties of thiol SAMs but remain chemically unchanged for several weeks when exposed to air. This robustness makes them much easier to use in research and in devices, such as in molecular electronics.

Rene Fransen | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Less expensive, more effective pneumonia vaccines are tested in humans
01.04.2020 | Fundação de Amparo à Pesquisa do Estado de São Paulo

nachricht University of Innsbruck develops novel corona test method
01.04.2020 | Universität Innsbruck

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Blocking the Iron Transport Could Stop Tuberculosis

The bacteria that cause tuberculosis need iron to survive. Researchers at the University of Zurich have now solved the first detailed structure of the transport protein responsible for the iron supply. When the iron transport into the bacteria is inhibited, the pathogen can no longer grow. This opens novel ways to develop targeted tuberculosis drugs.

One of the most devastating pathogens that lives inside human cells is Mycobacterium tuberculosis, the bacillus that causes tuberculosis. According to the...

Im Focus: Physicist from Hannover Develops New Photon Source for Tap-proof Communication

An international team with the participation of Prof. Dr. Michael Kues from the Cluster of Excellence PhoenixD at Leibniz University Hannover has developed a new method for generating quantum-entangled photons in a spectral range of light that was previously inaccessible. The discovery can make the encryption of satellite-based communications much more secure in the future.

A 15-member research team from the UK, Germany and Japan has developed a new method for generating and detecting quantum-entangled photons at a wavelength of...

Im Focus: Junior scientists at the University of Rostock invent a funnel for light

Together with their colleagues from the University of Würzburg, physicists from the group of Professor Alexander Szameit at the University of Rostock have devised a “funnel” for photons. Their discovery was recently published in the renowned journal Science and holds great promise for novel ultra-sensitive detectors as well as innovative applications in telecommunications and information processing.

The quantum-optical properties of light and its interaction with matter has fascinated the Rostock professor Alexander Szameit since College.

Im Focus: Stem Cells and Nerves Interact in Tissue Regeneration and Cancer Progression

Researchers at the University of Zurich show that different stem cell populations are innervated in distinct ways. Innervation may therefore be crucial for proper tissue regeneration. They also demonstrate that cancer stem cells likewise establish contacts with nerves. Targeting tumour innervation could thus lead to new cancer therapies.

Stem cells can generate a variety of specific tissues and are increasingly used for clinical applications such as the replacement of bone or cartilage....

Im Focus: Artificial solid fog material creates pleasant laser light

An international research team led by Kiel University develops an extremely porous material made of "white graphene" for new laser light applications

With a porosity of 99.99 %, it consists practically only of air, making it one of the lightest materials in the world: Aerobornitride is the name of the...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

“4th Hybrid Materials and Structures 2020” takes place over the internet

26.03.2020 | Event News

Most significant international Learning Analytics conference will take place – fully online

23.03.2020 | Event News

MOC2020: Fraunhofer IOF organises international micro-optics conference in Jena

03.03.2020 | Event News

Latest News

Hubble finds best evidence for elusive mid-size black hole

01.04.2020 | Physics and Astronomy

Flooding stunted 2019 cropland growing season, resulting in more atmospheric CO2

01.04.2020 | Earth Sciences

To tune up your quantum computer, better call an AI mechanic

01.04.2020 | Information Technology

Science & Research
Overview of more VideoLinks >>>