Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New self-assembled monolayer is resistant to air


Buckyballs can pave the way for molecular electronics

Organic self-assembled monolayers (SAMs) have been around for over forty years. The most widely used form is based on thiols, bound to a metal surface. However, although the thiol SAMs are very versatile, they are also chemically unstable. Exposure of these monolayers to air will lead to oxidation and breakdown within a single day.

This is an artist's impression of a self-assembled layer of functionalized buckyballs. The fullerenes attach to the metal surface, and the glycol-ether tails induce self-assembly of a bilayer. The upper half can be replaced by a different compound, when this is also functionalized with glycol-ether. The paper describes how the upper layer is replaced by spiropyrans (molecules that will change shape when exposed to UV light) connected to a glycol-ether tail.

Credit: Xinkai Qiu, Stratingh Institute for Chemistry, University of Groningen

University of Groningen scientists have now created SAMs using buckyballs functionalized with 'tails' of ethylene glycol. These molecules produce self-assembled monolayers that have all the properties of thiol SAMs but remain chemically unchanged for several weeks when exposed to air. This robustness makes them much easier to use in research and in devices.

An article about these new SAMs was published in Nature Materials on 30 January.

Self-assembled monolayers are dynamic structures, explains University of Groningen Associate Professor of Organic-Materials Chemistry and Devices Ryan Chiechi: 'These monolayers self-repair and the molecules will continually find the most efficient packing. Furthermore, all processes are reversible, and it is possible to change their composition.'

This distinguishes SAMs from other monolayers that are used to functionalize surfaces. 'These are often very stable, but they don't self-assemble and lack the dynamics of SAMs.'

Quantum tunneling

SAMs based on the binding of thiols (sulfur-containing groups) to metal are widely studied and used. Applications of SAMs range from the control of wetting of- or adhesion to surfaces, creating chemical resistance in lithography, to sensor production or nanofabrication. The monolayers can also be used to produce molecular electronics. Chiechi: 'Electric current will pass through such a monolayer by quantum tunneling. And small modifications to the molecular layer can alter the tunneling properties. Through such chemical tailoring, it is possible to create new types of electronics.'

However, the most widely used thiol-based SAMs are sensitive to oxidization when exposed to air. Without protection, they will not last a single day. 'This means that you need all kinds of equipment to keep the air out when working with these SAMs for molecular electronics,' explains Chiechi. 'It also makes it difficult to use them in a biological context.'

Functionalized buckyballs

This is where the new buckyball-based SAMs come in. In a joint effort, scientists from the Stratingh Institute for Chemistry and the Zernike Institute for Advanced Materials at the University of Groningen have discovered and characterized the properties of glycol-ether functionalized fullerenes. The buckyballs adhere to metal surfaces even stronger than thiols.

The glycol-ether tails are polar and in organic solvents, this induces the formation of a bilayer. 'You simply put the metal in a solution of these functionalized buckyballs and the bilayer will form through self-assembly,' says Chiechi. Furthermore, SAMs prepared in this way are very resistant to oxidization: when left exposed to air, they will remain intact for at least 30 days.

'Our results strongly suggest that the tails of the molecules are intertwined. This results in a stable and very dynamic structure where molecules are free to move, which is typical for a SAM,' says Chiechi. The outer layer can be replaced by adding other functionalized groups. Chiechi and his colleagues added spiropyrans (molecules that will change shape when exposed to UV light) connected to a glycol-ether tail.

By placing an electrode on the outer layer, tunneling through the SAM was measured. The scientists showed that changing the shape of the spiropyran moiety with light also changed the conductance by several orders of magnitude.

Molecular electronics

There are other alternatives for thiol-based SAMs but they all have limitations. 'We believe that our SAMs have all the properties of thiol-based SAMs, with resistance to degradation by air as a large bonus', concludes Chiechi. 'Furthermore, we have shown that our system can be used to create molecular electronics.'

And it also appears to be a very useful platform for studying the behavior of SAMs. 'You can do this on your lab bench without any need for protection.' Chiechi thinks that his system might be useful for studying the behavior of bilayers, including the lipid bilayers that form cell membranes.

The ability to change the composition of the SAMs opens up interesting applications in molecular electronics. Chiechi: 'This might be used to create a topological computer architecture, for neuromorphic computing.' Changes in the composition of the SAM could produce a memristor and possibly a system for stochastic computing, which uses the probabilities of 1s and 0s to represent numbers in a bitstream.

'This could be represented by the fraction of one type of molecule in the SAM.' Before this can become a reality, however, more work will have to be done, for example, to understand why the glycol-ether phase is such an efficient tunneling medium.


Reference: Xinkai Qiu, Viktor Ivasyshyn, Li Qiu, Mihaela Enache, Jingjin Dong, Sylvia Rousseva, Giuseppe Portale, Meike Stöhr, Jan C. Hummelen, and Ryan C. Chiechi: Thiol-free self-assembled oligoethylene glycols enable robust air-stable molecular electronics. Nature Materials 20 January 2020.

Simple Science Summary

Many organic compounds will self-assemble on a surface into structures of just one molecular layer, a so-called self-assembled monolayer or SAM. These SAMS are being used by scientists for different purposes. Most SAMs are based on molecules that bind to the surface with sulfur-containing chemical groups (thiols), but these form complexes that are chemically unstable in air. Organic chemists from the University of Groningen created SAMs using carbon buckyballs functionalized with 'tails' of ethylene glycol. These molecules produce self-assembled monolayers that have all the properties of thiol SAMs but remain chemically unchanged for several weeks when exposed to air. This robustness makes them much easier to use in research and in devices, such as in molecular electronics.

Rene Fransen | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht "Make two out of one" - Division of Artificial Cells
19.02.2020 | Max-Planck-Institut für Kolloid- und Grenzflächenforschung

nachricht Sweet beaks: What Galapagos finches and marine bacteria have in common
19.02.2020 | Max-Planck-Institut für Marine Mikrobiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>



Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

Latest News

"Make two out of one" - Division of Artificial Cells

19.02.2020 | Life Sciences

High-Performance Computing Center of the University of Stuttgart Receives new Supercomuter "Hawk"

19.02.2020 | Information Technology

A step towards controlling spin-dependent petahertz electronics by material defects

19.02.2020 | Power and Electrical Engineering

Science & Research
Overview of more VideoLinks >>>