Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New RNA sequencing strategy provides insight into microbiomes

17.12.2018

Tools allow scientists to understand the activity of naturally occurring microbiomes in response to real-world conditions and diet

Researchers from the University of Chicago have developed a high-throughput RNA sequencing strategy to study the activity of the gut microbiome.


Closeup of bacterial cells.

Credit: National Institutes of Health

The new tools analyze transfer RNA (tRNA), a molecular Rosetta Stone that translates the genetic information encoded in DNA into proteins that perform basic biological functions.

Developing a clear picture of tRNA dynamics will allow scientists to understand the activity of naturally occurring microbiomes, and study their responses to environmental changes, such as varying temperatures or changing availability of nutrients.

In a new study published in Nature Communications, a team of scientists led by Tao Pan, PhD, professor of biochemistry and molecular biology, and A. Murat Eren, PhD, assistant professor of medicine at UChicago, demonstrated the application of tRNA sequencing to gut microbiome samples from mice that were fed either a low-fat or high-fat diet.

The new software and computational strategy described in the study created a catalog of tRNA molecules recovered from the gut samples, traced them back to the bacteria responsible for their expression, and measured chemical modifications in tRNA that take place after transcription.

Each tRNA in bacteria has an average of eight chemical modifications that can tune its function. The new high-throughput sequencing and analysis strategy detects two of them, but it can also measure the amount of modification on a scale from 0 to 100 percent at each site.

The level of one of the modifications, called m1A, was higher in the gut microbiome of mice that were fed a high-fat diet. This is the first time scientists have been able to see any modification level change in tRNA in any microbiome.

"We were working backwards," Pan said. "We had no preconceived notion of why the m1A tRNA modifications were actually there or what they were doing, but to see any modification change at all in the microbiome is unprecedented."

The m1A modification helps synthesize certain types of proteins that may be more abundant in a high-fat diet. The researchers don't know yet if these modification differences occur in response to that diet, or if they are already present and become active to enhance the synthesis of those proteins.

The study is the first of a series of microbiome projects from UChicago funded by a grant from the Keck Foundation. Pan has pioneered the use of tRNA sequencing tools, and the grant will fund continuing work to make them widely accessible through new computational strategies that Eren develops.

Large sets of data generated by tRNA sequencing can provide critical insights into microbiomes associated with humans or the environment at a low cost.

"The molecular and computational advances that have emerged during the last two decades have only helped us scratch the surface of microbial life and their influence on their surroundings," Eren said.

"By providing quick and affordable insights into the core of the translational machinery, tRNA sequencing may become not only a way to gain insights into microbial responses to subtle environmental changes that can't be easily measured by other means, but also bring more RNA biology and RNA epigenetics into the rapidly developing field of the microbiome."

Pan and Eren agree that there is much room to improve this novel strategy, and they hope that it will happen quickly.

"There are a number of ways to examine microbiome activities, but nothing is faster and gets you more volume of data than sequencing," Pan said. "Here we have developed a new method that reports activity of the microbiome through tRNA and does so at high throughput. That's really the value."

The study, "Microbiome characterization by high-throughput transfer RNA sequencing and modification analysis," was supported by the National Natural Science Foundation of China, Shandong Provincial Natural Science Foundation, China Scholarship Council, the National Institutes of Health, the University of Chicago and the Keck Foundation.

Additional authors include Michael H. Schwartz, Jessica N. Pan, Wesley C. Clark, Steven Cui, Matthew J. Eckwahl, David W. Pan, Marc Parisien, Brian L. Cheng, Kristina Martinez, and Eugene B. Chang from UChicago; Haipeng Wang from UChicago, Shandong University of Technology, China, and the Toyota Technological Institute at Chicago; Sarah M. Owens from UChicago and Argonne National Laboratory; and Jinbo Xu from the Toyota Technological Institute at Chicago.

Matt Wood | EurekAlert!
Further information:
http://dx.doi.org/10.1038/s41467-018-07675-z

Further reports about: Molecular Biology RNA RNA sequencing strategy high-fat diet microbiom tRNA

More articles from Life Sciences:

nachricht How molecules teeter in a laser field
18.01.2019 | Forschungsverbund Berlin

nachricht Discovery of enhanced bone growth could lead to new treatments for osteoporosis
18.01.2019 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Additive manufacturing reflects fundamental metallurgical principles to create materials

18.01.2019 | Materials Sciences

How molecules teeter in a laser field

18.01.2019 | Life Sciences

The cytoskeleton of neurons has been found to be involved in Alzheimer's disease

18.01.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>