Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New method enables “photographing” of enzymes

14.05.2019

Scientists at the University of Bonn have developed a method with which an enzyme at work can be “photographed”. Their method makes it possible to better understand the function of important biomolecules. The researchers also hope to gain insights into the causes of certain enzyme disorders. The study will be published in the journal “Chemistry - A European Journal” and is already available online.

If an alien saw a picture of a pair of scissors for the first time in a craft supplies catalog, he would probably have no idea what we earthlings use this thing for. If, on the other hand, he were to be shown a video in which the scissors open and close, he could perhaps deduce their function with a little imagination.


The Fe3+ ion in the catalytic center behaves like a magnet: If it changes its polarity, this causes an echo in the magnetic marker, from which the distance can be calculated.

© AG Schiemann/Uni Bonn


Prof. Dr. Olav Schiemann (left) and Dr. Dinar Abdullin at the measuring apparatus in the Institute for Physical and Theoretical Chemistry at the University of Bonn.

© Photo: PD Dr. Gregor Hagelueken/Uni Bonn

Scientists have a very similar approach when they want to understand how an enzyme works: If they know the structure of the molecule at all, then usually only as a still image. They do not know how the enzyme behaves in action, which parts move towards each other and which parts move away from each other.

Enzymes catalyze certain chemical reactions in the cells, comparable to scissors that cut paper. They have catalytic centers (the blades) which come into contact with the starting material (the paper).

“The three-dimensional form of the enzyme usually changes during this process,” explains Prof. Dr. Olav Schiemann from the Institute of Physical and Theoretical Chemistry at the University of Bonn. “Normally, these conformational changes cannot be made visible, or only with great effort. This often makes it difficult to comprehend the catalysis mechanism.”

Schiemann's research group has succeeded in developing a method with which the movements of parts of the protein against each other can be measured in the course of catalysis. The Bonn scientists have been working on such methods with great success for several years now.

In their current study, they have examined a particularly important group of enzymes. These carry metal ions with numerous unpaired electrons in their catalytic centers. One example is hemoglobin, which binds oxygen with the help of an iron ion and can thus be transported in the blood.

Flipping ions

“Our current methods are unsuitable for such high-spin ions,” explains Schiemann's colleague Dr. Dinar Abdullin. “We therefore developed a new method, worked out the theory and successfully tested it.” The researchers made use of the fact that high-spin ions behave like small electromagnets. In addition, they can randomly change their polarity - they “flip”: The North Pole becomes the South Pole and the South Pole becomes the North Pole.

This phenomenon can be used for distance measurement. Here, the scientists link the enzyme with certain chemical compounds that also have electromagnetic properties.

“When the high-spin ions flip, these small electromagnets react to the changed magnetic field in their environment by also changing their polarity,” explains Abdullin. When and how they do this depends, among other things, on the distance to the high-spin ion. This makes it possible to determine the distance between the two so accurately.

If several magnetic groups are bound to one enzyme, the distance of each of these groups to the high-spin ion and thus to the catalytic center is obtained. “By combining these values, we can measure the spatial position of this center, as if we were using a molecular GPS,” explains Schiemann. “For example, we can determine how its position changes relative to the other magnetic groups in the course of catalysis.”

However, the scientists are not yet able to really watch the enzyme at work. “We are still working with frozen cells,” says Schiemann. “These contain numerous enzymes that were frozen at different points in time during the catalytic reaction. So we do not obtain a film, but a series of “stills” - as if the scissors from the introductory example were photographed at countless different moments during the editing process.

“But we are already working on the next improvement,” emphasizes the chemist: “The spatial measurement of biomolecules in cells and at room temperature.” The researchers hope to gain insights into the development of certain diseases that are triggered by functional disorders of enzymes. In addition to Dr. Maxim Yulikov of ETH Zurich from the University of Bonn, the study also involved the working group led by Prof. Dr. Stefan Grimme (also Institute of Physical and Theoretical Chemistry) and Prof. Dr. Arne Lützen (Kekulé Institute).

Wissenschaftliche Ansprechpartner:

Prof. Dr. Olav Schiemann
Institut für Physikalische und Theoretische Chemie
Universität Bonn
Tel. +49(0)228/732989
E-mail: schiemann@pc.uni-bonn.de

Originalpublikation:

D. Abdullin, H. Matsuoka, M. Yulikov, N. Fleck, C. Klein, S. Spicher, G. Hagelueken, S. Grimme, A. Lützen and O. Schiemann: Pulsed EPR Dipolar Spectroscopy under the Breakdown of the High-Field Approximation: The High-Spin Iron(III) Case; Chem. Eur. J. 2019; DOI: 10.1002/chem.201900977

Johannes Seiler Dezernat 8 | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-bonn.de/

Further reports about: catalytic catalytic centers catalytic reaction enzyme ions

More articles from Life Sciences:

nachricht Recording embryonic development
14.05.2019 | Max-Planck-Institut für molekulare Genetik

nachricht Research on repetitive worm behavior may have implications for understanding human disease
13.05.2019 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Recording embryonic development

Scientists develop a molecular recording tool that enables in vivo lineage tracing of embryonic cells

The beginning of new life starts with a fascinating process: A single cell gives rise to progenitor cells that eventually differentiate into the three germ...

Im Focus: New teeth: Highly rigid – and ready for immediate use

Significantly improved glass ceramics

The demands placed on a dental prosthesis are high: it should look natural, endure accidental biting on cherry pits – and if possible, the patient should be...

Im Focus: Researchers take a step towards light-based, brain-like computing chip

Researchers from the Universities of Münster (Germany), Oxford and Exeter (both UK) have succeeded in developing a piece of hardware which could pave the way for creating computers which resemble the human brain. The scientists produced a chip containing a network of artificial neurons that works with light and can imitate the behaviour of neurons and their synapses. The network is able to “learn” information and use this as a basis for computing and recognizing patterns. As the system functions solely with light and not with electrons, it can process data many times faster than traditional systems. The study is published in “Nature”.

A technology that functions like a brain? In these times of artificial intelligence, this no longer seems so far-fetched - for example, when a mobile phone can...

Im Focus: First demonstration of antimatter wave interferometry

An international collaboration with participation of the University of Bern has demonstrated for the first time in an interference experiment that antimatter particles also behave as waves besides having particle properties. This success paves the way to a new field of investigations of antimatter.

Matter waves constitute a crucial feature of quantum mechanics, where particles have wave properties in addition to particle characteristics. This...

Im Focus: Quantum sensor for photons

A photodetector converts light into an electrical signal, causing the light to be lost. Researchers led by Tracy Northup at the University of Innsbruck have now built a quantum sensor that can measure light particles non-destructively. It can be used to further investigate the quantum properties of light.

Physicist Tracy Northup is currently researching the development of quantum internet at the University of Innsbruck. The American citizen builds interfaces...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

A dance of two: Tailoring interactions between remote fluids of excitons

13.05.2019 | Physics and Astronomy

Fusible and printable elastomer sensors for e-textiles

13.05.2019 | Trade Fair News

Research on repetitive worm behavior may have implications for understanding human disease

13.05.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>