Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New metabolic pathway discovered in rumen microbiome

06.01.2020

In ruminants, a bacterium reacts to fluctuating sodium content with two different respiratory circuits

Cows can adapt themselves to a fluctuating sodium content in their feed. How they do that was so far a secret. Researchers from Goethe University have now discovered a bacterium in the microbiome of the rumen which has a new type of cell respiration.


The bacterium Pseudobutyrivibrio ruminis (green), a typical ruminal bacterium, obtains energy via two different respiratory circuits. The one requires sodium ions, the other hydrogen ions (H+). In this way, it can adapt to fluctuating sodium concentrations in animal feed in an optimum way.

Picture: Goethe University/ Cow: Shutterstock

The cow can only process grass in its rumen with the help of billions of microorganisms. An entire zoo of bacteria, archaea and protozoa works there like on a production line: First of all, these single-cell organisms break down the cellulose, a polysaccharide.

Other bacteria ferment the sugars released into fatty acids, alcohols and gases, such as hydrogen and carbon dioxide. Finally, methanogenic archaea transform these two gases into methane.

An average cow produces about 110 liters of methane per day. It escapes from its mouth through rumination, but also mixes again with partly digested food. As a result, the sodium content of the grass pulp can fluctuate to a considerable degree (between 60 and 800 millimoles of sodium chloride (NaCl) per liter).

A German-American research team has now discovered how the ruminal bacteria adapt to these extreme fluctuations in sodium content: “Bioinformatic analyses of the genome of ruminal bacteria led our American colleague Tim Hackmann to assume that some ruminal bacteria have two different respiratory circuits. One of them functions with sodium ions and the other without,” explains Professor Volker Müller from the Department of Molecular Microbiology and Bioenergetics at Goethe University.

That is why Müller suggested to his doctoral researcher Marie Schölmerich that she study a typical representative in the microbiome of ruminants: the bacterium Pseudobutyrivibrio ruminis.

Together with undergraduate student Judith Dönig and Master’s student Alexander Katsyv, Marie Schölmerich cultivated the bacterium. Indeed, they were able to corroborate both respiratory circuits.

As the researchers report in the current issue of the Proceedings of the National Academy of Sciences (PNAS), the electron carrier ferredoxin (Fd) is reduced during sugar oxidation. Reduced ferredoxin drives both respiratory circuits.

The one respiratory circuit comprises the enzyme complex Fd:NAD+ oxidoreductase (Rnf complex). It uses energy to transport sodium ions out of the cell. When they re-enter the cell, the sodium ions trigger an ATP synthase, so that ATP is produced. This respiratory circuit only works in the presence of sodium ions.

In the absence of sodium ions, the bacterium forms an alternative respiratory circuit with another enzyme complex: The Ech hydrogenase (synonymous: Fd:H+ oxidoreductase) produces hydrogen and pumps protons out of the cell. If these re-enter the cell via a second ATP synthase that accepts protons but not sodium ions, ATP is also produced.

“This is the first bacterium so far in which these two simple, completely different respiratory circuits have been corroborated, but our bioinformatic analyses suggest that they are also found in other bacteria,” explains Marie Schölmerich. “It seems, therefore, that this adaptation strategy is more widespread,” she assumes.

Interestingly, both enzyme complexes (Rnf and Ech) were also discovered in bacteria which are old in terms of evolutionary biology. Professor Müller’s research group has examined them in depth, but always only found one of the two enzyme complexes and never both together. “We’re now going to use synthetic microbiology methods to produce hybrids of bacteria that contain both complexes in order to optimize them for biotechnological processes. In this way, we can raise the cellular ATP content, which will make it possible to produce products of a higher quality,” explains Professor Müller. The intention is to use the respiratory circuits to recover valuable substances through the fermentation of synthesis gas. This is the subject of the trials being conducted in the framework of a project sponsored by the Federal Ministry of Education and Research.

A picture can be downloaded under: : http://www.uni-frankfurt.de/84412971

Caption: The bacterium Pseudobutyrivibrio ruminis (green), a typical ruminal bacterium, obtains energy via two different respiratory circuits. The one requires sodium ions, the other hydrogen ions (H+). In this way, it can adapt to fluctuating sodium concentrations in animal feed in an optimum way.
Picture: Goethe University/ Cow: Shutterstock

Publication: Schölmerich, M.C., Katsyv, A., Dönig, J., Hackmann, T., Müller, V. (20XX). Energy conservation involving two respiratory circuits. Proc. Natl. Acad. Sci. U.S.A., in press.

Further information: Professor Volker Müller, Molecular Microbiology and Bioenergetics, Riedberg Campus, Tel.: +49(0)69-798-29507; VMueller@bio.uni-frankfurt.de.
Current news about science, teaching, and society can be found on GOETHE-UNI online (www.aktuelles.uni-frankfurt.de)

Goethe University is a research-oriented university in the European financial centre Frankfurt am Main. The university was founded in 1914 through private funding, primarily from Jewish sponsors, and has since produced pioneering achievements in the areas of social sciences, sociology and economics, medicine, quantum physics, brain research, and labour law. It gained a unique level of autonomy on 1 January 2008 by returning to its historic roots as a "foundation university". Today, it is one of the three largest universities in Germany. Together with the Technical University of Darmstadt and the University of Mainz, it is a partner in the inter-state strategic Rhine-Main University Alliance. Internet: www.uni-frankfurt.de

Publisher: The President of Goethe University Editor: Dr. Anke Sauter, Science and Humanities Editor, International Communication, PR & Communication Department, Theodor-W.-Adorno-Platz 1, 60323 Frankfurt am Main, Tel: +49(0)69 798-13066, Fax +49(0)69 798-761 12531, sauter@pvw.uni-frankfurt.de.

Wissenschaftliche Ansprechpartner:

Professor Volker Müller, Molecular Microbiology and Bioenergetics, Riedberg Campus, Tel.: +49(0)69-798-29507; VMueller@bio.uni-frankfurt.de

Originalpublikation:

Schölmerich, M.C., Katsyv, A., Dönig, J., Hackmann, T., Müller, V. (20XX). Energy conservation involving two respiratory circuits. Proc. Natl. Acad. Sci. U.S.A., in press.

Jennifer Hohensteiner | idw - Informationsdienst Wissenschaft

Further reports about: Energy bacteria enzyme ions metabolic pathway sodium synthase

More articles from Life Sciences:

nachricht New self-assembled monolayer is resistant to air
22.01.2020 | University of Groningen

nachricht Mosquitoes are drawn to flowers as much as people -- and now scientists know why
22.01.2020 | University of Washington

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New roles found for Huntington's disease protein

Crucial role in synapse formation could be new avenue toward treatment

A Duke University research team has identified a new function of a gene called huntingtin, a mutation of which underlies the progressive neurodegenerative...

Im Focus: A new look at 'strange metals'

For years, a new synthesis method has been developed at TU Wien (Vienna) to unlock the secrets of "strange metals". Now a breakthrough has been achieved. The results have been published in "Science".

Superconductors allow electrical current to flow without any resistance - but only below a certain critical temperature. Many materials have to be cooled down...

Im Focus: Programmable nests for cells

KIT researchers develop novel composites of DNA, silica particles, and carbon nanotubes -- Properties can be tailored to various applications

Using DNA, smallest silica particles, and carbon nanotubes, researchers of Karlsruhe Institute of Technology (KIT) developed novel programmable materials....

Im Focus: Miniature double glazing: Material developed which is heat-insulating and heat-conducting at the same time

Styrofoam or copper - both materials have very different properties with regard to their ability to conduct heat. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz and the University of Bayreuth have now jointly developed and characterized a novel, extremely thin and transparent material that has different thermal conduction properties depending on the direction. While it can conduct heat extremely well in one direction, it shows good thermal insulation in the other direction.

Thermal insulation and thermal conduction play a crucial role in our everyday lives - from computer processors, where it is important to dissipate heat as...

Im Focus: Fraunhofer IAF establishes an application laboratory for quantum sensors

In order to advance the transfer of research developments from the field of quantum sensor technology into industrial applications, an application laboratory is being established at Fraunhofer IAF. This will enable interested companies and especially regional SMEs and start-ups to evaluate the innovation potential of quantum sensors for their specific requirements. Both the state of Baden-Württemberg and the Fraunhofer-Gesellschaft are supporting the four-year project with one million euros each.

The application laboratory is being set up as part of the Fraunhofer lighthouse project »QMag«, short for quantum magnetometry. In this project, researchers...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

 
Latest News

New self-assembled monolayer is resistant to air

22.01.2020 | Life Sciences

Ultrafast camera takes 1 trillion frames per second of transparent objects and phenomena

22.01.2020 | Power and Electrical Engineering

Mosquitoes are drawn to flowers as much as people -- and now scientists know why

22.01.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>