Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New insights into the function of the main class of drug targets

04.02.2016

About thirty percent of all medical drugs such as beta-blockers or antidepressants interact with certain types of cell surface proteins called G protein coupled receptors. In collaboration with researchers from the Paul Scherrer Institute, the group of Prof. Stephan Grzesiek at the Biozentrum of the University of Basel has now elucidated in detail how the structure of such a receptor changes when drugs bind and how the structural change transmits a signal to the cellular interior. These results have recently been published in “Nature”.

A wide variety of drugs such as beta-blockers against high blood pressure or drugs against allergies, cancer, Parkinson’s disease, HIV and others bind to cell surface proteins which belong to the family of G protein coupled receptors. The drug binding transmits a signal to the inside of the cell. Despite the fact that many structures of these receptors are known, it remained unclear how the signal is transmitted to the intracellular inside.


The NMR technology detects signals (shown as contour lines) from individual atoms (blue spheres) of the β1-adrenergic G protein coupled membrane receptor (grey ribbon diagram). Upon binding of drugs such as adrenalin (black chemical structure) the signals from the atoms change (from blue to yellow/red contours). This change allows the effect of drug binding to be followed throughout the receptor. © University of Basel, Biozentrum

To better understand the signal transduction function, Prof. Stephan Grzesiek’s team at the Biozentrum of the University of Basel, together with researchers from the Paul Scherrer Institute (PSI) have studied in detail one receptor – the β1-adrenergic receptor. Using Nuclear Magnetic Resonance spectroscopy (NMR), the scientists have been able to follow the motions of this receptor in response to various drugs, and have thus obtained unprecedented detailed insights into the general mechanism of G protein coupled receptor function.

Structural changes provide details on receptor function

The β1-adrenergic receptor is a protein embedded in the membrane of cardiac cells. It translates the binding of extracellular drug molecules into the activation of intracellular proteins. The hormone noradrenaline, for example, induces a signaling cascade in the cell, which at the end increases heart rate and blood pressure. So-called beta-blockers impede these effects by preventing the hormone from binding to the adrenergic receptor. Thereby, they reduce the heart rate. Structural details of the signal transduction caused by such receptor-ligand interactions have so far remained unclear.

“We have applied high resolution NMR to analyze the structural changes of the β1-adrenergic receptor upon binding of various drugs”, explains first author Shin Isogai. “We could observe how the receptor recognizes the binding partner, interprets its chemical structure and transmits this information to the inside of the cell by changing its structure. This insight into the functionality of the β1-adrenergic receptor at the atomic level can be applied to the whole family of G protein coupled receptors, which are well known as important drug targets.”

Prediction of drug efficacy

Using the NMR observation of the atomic nuclei, the scientists could see how deep the drugs insert into the receptor from the outside, how the drug pushes certain groups away and how it transmits this mechanical signal to the inside. Thus they identified crucial mechanical connections for the signal transmission within the receptor structure. The NMR signals also revealed the binding strength of the drugs and their potency to trigger an intracellular response. In fact, they could follow how a model protein for the intracellular response binds to the activated receptor.

“We are very happy that we could see these details. The receptors are notoriously difficult to study. Many researchers have tried for more than a decade”, emphasizes Isogai. “Now we can apply this method to see the function of individual amino acids and to study other receptors.” In the future, the NMR method may also be used for drug screening and drug development.

Original article:

Shin Isogai, Xavier Deupi, Christian Opitz, Franziska M. Heydenreich, Florian Brueckner, Gebhard F.X. Schertler, Dmitry B. Veprintsev and Stephan Grzesiek. Backbone NMR reveals allosteric signal transduction networks in the β1-adrenergic receptor. Nature; published online 3 February 2016.| doi: 10.1038/nature16577

Further information

Stephan Grzesiek, Universität Basel, Biozentrum, Tel.+41 61 267 21 00, E-Mail: stephan.grzesiek@unibas.ch

Katrin Bühler | Universität Basel
Further information:
http://www.unibas.ch

More articles from Life Sciences:

nachricht Drug discovery: First rational strategy to find molecular glue degraders
03.08.2020 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

nachricht Chlamydia: Greedy for Glutamine
03.08.2020 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

Im Focus: NYUAD astrophysicist investigates the possibility of life below the surface of Mars

  • A rover expected to explore below the surface of Mars in 2022 has the potential to provide more insights
  • The findings published in Scientific Reports, Springer Nature suggests the presence of traces of water on Mars, raising the question of the possibility of a life-supporting environment

Although no life has been detected on the Martian surface, a new study from astrophysicist and research scientist at the Center for Space Science at NYU Abu...

Im Focus: Manipulating non-magnetic atoms in a chromium halide enables tuning of magnetic properties

New approach creates synthetic layered magnets with unprecedented level of control over their magnetic properties

The magnetic properties of a chromium halide can be tuned by manipulating the non-magnetic atoms in the material, a team, led by Boston College researchers,...

Im Focus: A new method to significantly increase the range and stability of optical tweezers

Scientists of Tomsk Polytechnic University jointly with a team of the V.E. Zuev Institute of Atmospheric Optics of the Siberian Branch of the Russian Academy of Sciences have discovered a method to increase the operation range of optical traps also known

Optical tweezers are a device which uses a laser beam to move micron-sized objects such as living cells, proteins, and molecules. In 2018, the American...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Novel approach improves graphene-based supercapacitors

03.08.2020 | Information Technology

Germany-wide rainfall measurements by utilizing the mobile network

03.08.2020 | Information Technology

Drug discovery: First rational strategy to find molecular glue degraders

03.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>