Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New approach for a biological programming language

23.06.2020

New findings by researchers led by TU Graz computer scientists Wolfgang Maass and Robert Legenstein on neural information processing in the brain could enable more efficient AI methods.

Specifically, the researchers have succeeded in mathematically modelling the emergence and interaction between so-called "assemblies".


TU Graz computer scientists Robert Legenstein and Wolfgang Maass are working with other researchers to take AI a big step further.

Jimmy Lunghammer / lunghammer.at

© Lunghammer - TU Graz

These are neuron groups in the brain that form the basis for higher cognitive abilities such as thinking, imagining, arguing, planning or speech processing.

Better understanding of how the brain works

The Canadian neuroscientist Donald H. Hebb postulated as early as 1949 that neurons form such groups, in other words that they act together to encode individual words or symbols, as well as holistic "concepts".

"However, the existence of assemblies has only become more consolidated in recent years, and our models are based on the latest results from brain research," explains Maass.

Assemblies are flowing entities that constantly reorganize themselves to process environmental stimuli, give them a symbolic meaning, structure them and transform them into knowledge.

This adaptability – also called plasticity – provides the brain with the ability to get over its limited processing capacity and form an "unlimited" number of patterns.

The results not only contribute to a better understanding of the brain, they could also lead to efficient new AI methods as they combine the advantages of two main approaches to AI research: the symbolic and the connectionist.

Symbolic vs. connectionist information processing

Algorithms in symbol systems are based on defined rules (if/then commands) and logical formulas, and are persuasive through their ability to abstract: i.e. the ability to generalize and to apply general contexts to concrete facts. For this reason they are optimally suited for easy application to completely new situations.

However, symbol-based systems must be programmed in a complex way and cannot be trained for demanding applications by means of large amounts of data, as is possible with neural networks.

The latter consist of small, networked and adaptive computing units that are self-organizing and can quickly solve complex problems when working together.

The learning ability of neural networks has made the connectionist approach more attractive for current AI research and for modern AI applications. However, neural networks have difficulties with tasks that did not occur in their training set.

"Human" brain architecture for machines

The assembly models presented now aim to combine the ability to abstract with the ability to learn. "These are neural networks that work symbolically with their assemblies. The paradigm we use is the human brain, which also combines both," said Legenstein.

The work, which also involves researchers from the University of Nottingham, the University of California, Berkeley, and the Georgia Institute of Technology, is being partially incorporated into the Human Brain Project (HBP) – a Europe-wide interdisciplinary research association that has been working since 2015 on electronically reconstructing the human brain and simulating its functions. Wolfgang Maass and his team are responsible for the Principles of Brain Computation work package (https://www.humanbrainproject.eu/en/silicon-brains/how-we-work/computational-pri...) in the Human Brain Project.

This research work is funded by the Austrian Science Fund (FWF) and the Human Brain Project (https://www.humanbrainproject.eu/en/). It is anchored in the Fields of Expertise "Human and biotechnology" (https://www.tugraz.at/en/research/forschungsschwerpunkte-5-fields-of-expertise/h...) and "Information, Communication & Computing" (https://www.tugraz.at/en/research/fields-of-expertise/information-communication-...), two of the five Fields of Expertise of TU Graz.

Wissenschaftliche Ansprechpartner:

TU Graz | Institute of Theoretical Computer Science
Wolfgang MAASS
Em.Univ.-Prof. Dipl.-Ing. Dr.rer.nat.
Phone: +43 316 873 5822
maass@igi.tugraz.at

Robert LEGENSTEIN
Assoc.Prof. Dipl.-Ing. Dr.techn.
Phone: +43 316 873 5824
legi@igi.tugraz.at

Originalpublikation:

STDP Forms Associations between Memory Traces in Networks of Spiking Neurons
Cerebral Cortex, Volume 30, Issue 3, March 2020, Pages 952–968.
DOI: 10.1093/cercor/bhz140

A Model for Structured Information Representation in Neural Networks of the Brain
eNeuro 7 May 2020, 7 (3) ENEURO.0533-19.2020;
DOI: 10.1523/ENEURO.0533-19.2020

Brain computation by assemblies of neurons
Proceedings of the National Academy of Sciences Jun 2020, 202001893;
DOI: 10.1073/pnas.2001893117

Weitere Informationen:

https://engineering.columbia.edu/press-releases/discovering-how-brain-works-thro... (press release of the Columbia University on the paper "Brain computation by assemblies of neurons")
https://www.tugraz.at/institutes/igi/home/ (TU Graz | Institute of Theoretical Computer Science)

Mag. Christoph Pelzl, MSc | Technische Universität Graz

More articles from Life Sciences:

nachricht Rising water temperatures could endanger the mating of many fish species
03.07.2020 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Moss protein corrects genetic defects of other plants
03.07.2020 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

Im Focus: AI monitoring of laser welding processes - X-ray vision and eavesdropping ensure quality

With an X-ray experiment at the European Synchrotron ESRF in Grenoble (France), Empa researchers were able to demonstrate how well their real-time acoustic monitoring of laser weld seams works. With almost 90 percent reliability, they detected the formation of unwanted pores that impair the quality of weld seams. Thanks to a special evaluation method based on artificial intelligence (AI), the detection process is completed in just 70 milliseconds.

Laser welding is a process suitable for joining metals and thermoplastics. It has become particularly well established in highly automated production, for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

 
Latest News

Rising water temperatures could endanger the mating of many fish species

03.07.2020 | Life Sciences

Risk of infection with COVID-19 from singing: First results of aerosol study with the Bavarian Radio Chorus

03.07.2020 | Studies and Analyses

Efficient, Economical and Aesthetic: Researchers Build Electrodes from Leaves

03.07.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>