Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New algorithm can more quickly predict LED materials

22.10.2018

Researchers report machine learning speeds discovery of new materials

Researchers from the University of Houston have devised a new machine learning algorithm that is efficient enough to run on a personal computer and predict the properties of more than 100,000 compounds in search of those most likely to be efficient phosphors for LED lighting.


Researchers from the University of Houston have devised a new machine learning algorithm that is efficient enough to run on a personal computer and predict the properties of more than 100,000 compounds in search of those most likely to be efficient phosphors for LED lighting.

Credit: University of Houston

They then synthesized and tested one of the compounds predicted computationally - sodium-barium-borate - and determined it offers 95 percent efficiency and outstanding thermal stability.

Jakoah Brgoch, assistant professor of chemistry, and members of his lab describe the work a paper published Oct. 22 in Nature Communications.

The researchers used machine learning to quickly scan huge numbers of compounds for key attributes, including Debye temperature and chemical compatibility. Brgoch previously demonstrated that Debye temperature is correlated with efficiency.

LED, or light-emitting diode, based bulbs work by using small amounts of rare earth elements, usually europium or cerium, substituted within a ceramic or oxide host - the interaction between the two materials determines the performance. The paper focused on rapidly predicting the properties of the host materials.

Brgoch said the project offers strong evidence of the value that machine learning can bring to developing high-performance materials, a field traditionally guided by trial-and-error and simple empirical rules.

"It tells us where we should be looking and directs our synthetic efforts," he said.

In addition to Brgoch, researchers on the paper include Ya Zhuo and Aria Mansouri Tehrani, graduate students in Brgoch's lab, former post-doctoral researcher Anton O. Oliynyk and recent Ph.D. graduate Anna C. Duke.

Brgoch collaborates with the UH Data Science Institute and has used the computing resources at the UH Center for Advanced Computing and Data Science for previous work. The algorithm used for this work, however, was run on a personal computer.

The project started with a list of 118,287 possible inorganic phosphor compounds from the Pearson's Crystal Structure Database; the algorithm whittled that to just over 2,000. Another 30 seconds and it had produced a list of about two dozen promising materials.

That process would have taken weeks without the benefit of machine learning, Brgoch said.

His lab does machine learning and prediction, as well as synthesis, so after agreeing the algorithm-recommended sodium-barium-borate was a good candidate, researchers created the compound.

It proved to be stable, with a quantum yield or efficiency of 95 percent, but Brgoch said the light produced was too blue to be commercially desirable.

That wasn't discouraging, he said. "Now we can to use the machine learning tools to find a luminescent material that emits in a wavelength that would be useful.

"Our goal is to make LED light bulbs not only more efficient but also improve their color quality, while reducing the cost."

More to the point, the researchers said, they demonstrated that machine learning can dramatically speed the process of discovering new materials. This work is part of his research group's broader efforts to using machine learning and computation to guide their discovery of new materials with transformative potential.

Media Contact

Jeannie Kever
jekever@uh.edu
713-743-0778

 @UH_News

http://www.uh.edu/news-events 

 

Jeannie Kever | EurekAlert!

More articles from Life Sciences:

nachricht Channels for the Supply of Energy
19.11.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Vine Compound Starves Cancer Cells
19.11.2018 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

How Humans and Machines Navigate Complex Situations

19.11.2018 | Science Education

Finding plastic litter from afar

19.11.2018 | Ecology, The Environment and Conservation

Channels for the Supply of Energy

19.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>