Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Movement control: how our brain responds to unexpected situations

24.08.2018

Scientists have demonstrated that the motor cortex is necessary for the execution of corrective movements in response to unexpected changes of sensory input but not when the same movements are executed spontaneously. Signatures of differential neuronal usage in the cortex accompany these two phenomena. The study by researchers from the University of Basel’s Biozentrum and the Friedrich Miescher Institute for Biomedical Research (FMI) has recently been published in “Neuron”.

In mammals, movement is controlled by circuits spanning throughout the central nervous system from the cortex to the spinal cord. The role of motor cortex in the control of movement is still unclear.


Warning – unexpected sensory feedback can have devastating consequences if not adequately corrected.

Image: FMI

In humans, lesions to motor cortex can result in a loss of voluntary control of movement. Building on the expertise of studying motor circuits and the control of movement of the laboratory of Prof. Silvia Arber (University of Basel/FMI) and the expertise in vivo physiology and cortical processing of the laboratory of Dr. Georg Keller (FMI), the authors teamed up to shed new light on the function of motor cortex.

Movement control in response to unexpected situations

The aim of the study was to test how and under which conditions motor cortex is required for movement control. The authors developed an assay in which they trained mice to navigate a virtual tunnel, a task requiring the adjustment of the heading direction by spontaneous turning on a spherical treadmill.

They also probed the response to unexpected changes in visual feedback that mice had to correct for – for example by suddenly shifting the direction the mouse is running in in the virtual environment. This allowed them to compare the same movements mice executed either spontaneously or as induced by unexpected changes to the visual feedback.

The authors found that motor cortex is only necessary for movement control when movements are executed in response to unexpected sensory feedback.

Specific activity patterns in the motor cortex

Recording neuronal activity in motor cortex as mice corrected for unpredicted sensory perturbations, the authors found that the activity patterns observed during the resultant motor corrections were different from those when the mouse executed the same movement spontaneously. This is consistent with a role of motor cortex in the corrective motor response, where it is required to engage in triggering an appropriate movement in response to the unexpected event.

“We believe that these findings change the way we think about how motor cortex functions from a view that it ‘simply’ controls movement to a role in which motor cortex is needed for sensory-guided control of movement in instances where the sensory processing is also cortically dependent,” says Matthias Heindorf, first author and former PhD student in the Arber and Keller laboratory.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Silvia Arber, University of Basel, Biozentrum, Tel. +41 61 207 20 57, E-Mail: silvia.arber@unibas.ch

Dr. Georg Keller, Friedrich Miescher Institute for Biomedical Research, Tel. +41 61 697 82 73, E-Mail: georg.keller@fmi.ch

Originalpublikation:

Matthias Heindorf, Silvia Arber & Georg B. Keller
Mouse motor cortex coordinates the behavioral response to unpredicted sensory feedback
Neuron (2018), doi: 10.1016/j.neuron.2018.07.046

Iris Mickein | Universität Basel
Further information:
http://www.unibas.ch

More articles from Life Sciences:

nachricht Tracing the evolution of vision
23.08.2019 | University of Göttingen

nachricht Caffeine does not influence stingless bees
23.08.2019 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hamburg and Kiel researchers observe spontaneous occurrence of skyrmions in atomically thin cobalt films

Since their experimental discovery, magnetic skyrmions - tiny magnetic knots - have moved into the focus of research. Scientists from Hamburg and Kiel have now been able to show that individual magnetic skyrmions with a diameter of only a few nanometres can be stabilised in magnetic metal films even without an external magnetic field. They report on their discovery in the journal Nature Communications.

The existence of magnetic skyrmions as particle-like objects was predicted 30 years ago by theoretical physicists, but could only be proven experimentally in...

Im Focus: Physicists create world's smallest engine

Theoretical physicists at Trinity College Dublin are among an international collaboration that has built the world's smallest engine - which, as a single calcium ion, is approximately ten billion times smaller than a car engine.

Work performed by Professor John Goold's QuSys group in Trinity's School of Physics describes the science behind this tiny motor.

Im Focus: Quantum computers to become portable

Together with the University of Innsbruck, the ETH Zurich and Interactive Fully Electrical Vehicles SRL, Infineon Austria is researching specific questions on the commercial use of quantum computers. With new innovations in design and manufacturing, the partners from universities and industry want to develop affordable components for quantum computers.

Ion traps have proven to be a very successful technology for the control and manipulation of quantum particles. Today, they form the heart of the first...

Im Focus: Towards an 'orrery' for quantum gauge theory

Experimental progress towards engineering quantized gauge fields coupled to ultracold matter promises a versatile platform to tackle problems ranging from condensed-matter to high-energy physics

The interaction between fields and matter is a recurring theme throughout physics. Classical cases such as the trajectories of one celestial body moving in the...

Im Focus: A miniature stretchable pump for the next generation of soft robots

Soft robots have a distinct advantage over their rigid forebears: they can adapt to complex environments, handle fragile objects and interact safely with humans. Made from silicone, rubber or other stretchable polymers, they are ideal for use in rehabilitation exoskeletons and robotic clothing. Soft bio-inspired robots could one day be deployed to explore remote or dangerous environments.

Most soft robots are actuated by rigid, noisy pumps that push fluids into the machines' moving parts. Because they are connected to these bulky pumps by tubes,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The power of thought – the key to success: CYBATHLON BCI Series 2019

16.08.2019 | Event News

4th Hybrid Materials and Structures 2020 28 - 29 April 2020, Karlsruhe, Germany

14.08.2019 | Event News

What will the digital city of the future look like? City Science Summit on 1st and 2nd October 2019 in Hamburg

12.08.2019 | Event News

 
Latest News

Making small intestine endoscopy faster with a pill-sized high-tech camera

23.08.2019 | Medical Engineering

More reliable operation offshore wind farms

23.08.2019 | Power and Electrical Engineering

Tracing the evolution of vision

23.08.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>