Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microscope measures muscle weakness

16.11.2018

Biotechnologists at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have developed a system to accurately measure muscle weakness caused by structural changes in muscle tissue. The new method allows muscle function to be assessed using imaging without the need for sophisticated biomechanical recordings, and could in future even make taking tissue samples for diagnosing myopathy superfluous.

The muscle is a highly ordered and hierarchically structured organ. This is reflected not only in the parallel bundling of muscle fibres, but also in the structure of individual cells.


The myofibrils responsible for contraction consist of hundreds of identically structured units connected one after another. This orderly structure determines the force which is exerted and the strength of the muscle.

Inflammatory or degenerative diseases or cancer can lead to a chronic restructuring of this architecture, causing scarring, stiffening or branching of muscle fibres and resulting in a dramatic reduction in muscular function.

Although such changes in muscular morphology can already be tracked using non-invasive multiphoton microscopy, it has not yet been possible to assess muscle strength accurately on the basis of imaging alone.

New system correlates structure and strength

Researchers from the Chair of Medical Biotechnology have now developed a system that allows muscular weakness caused by structural changes to be measured at the same time as optically assessing muscular architecture.

‘We engineered a miniaturized biomechatronics system and integrated it into a multiphoton microscope, allowing us to directly assess the strength and elasticity of individual muscle fibres at the same time as recording structural anomalies,’ explains Prof. Dr. Oliver Friedrich. In order to prove the muscle’s ability to contract, the researchers dipped the muscle cells into solutions with increasing concentrations of free calcium ions.

Calcium is also responsible for triggering muscle contractions in humans and animals. The viscoelasticity of the fibres was also measured, by stretching them little by little. A highly-sensitive detector recorded mechanical resistance exercised by the muscle fibres clamped on the device.

Data pool for simplified diagnosis

The technology developed by researchers at FAU is, however, merely the first step towards being able to diagnose muscle disorders much more easily in future: ‘Being able to measure isometric strength and passive viscoelasticity at the same time as visually showing the morphometry of muscle cells has enabled us, for the first time, to obtain direct structure-function data pairs’, Oliver Friedrich says.

‘This allows us to establish significant linear correlations between the structure and function of muscles at the single fibre level.’ The datapool will be used in future to reliably predict forces and biomechanical performances in skeletal muscle exclusively using optical assessments based on SHG images (the initials stand for Second Harmonic Generation and refer to images created using lasers at second harmonic frequency), without the need for complex strength measurements.

At present, muscle cells still have to be removed from the body before they can be examined using a multiphoton microscope. However, it is plausible that this may become superfluous in future if the necessary technology can continue to be miniaturized, making it possible for muscle function to be examined, for example, using a micro-endoscope.

Wissenschaftliche Ansprechpartner:

Further information:
Prof. Dr. Dr. Oliver Friedrich
Phone: +49 9131 85 23174
oliver.friedrich@fau.de

Originalpublikation:

The results have been published in the renowned journal Light: Science & Application:
‘Optical prediction of single muscle fiber force production using a combined biomechatronics and second harmonic generation imaging approach’
doi: 10.1038/s41377-018-0080-3

Dr. Susanne Langer | idw - Informationsdienst Wissenschaft
Further information:
http://www.fau.de/

More articles from Life Sciences:

nachricht Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow
16.07.2019 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

nachricht A human liver cell atlas
15.07.2019 | Max Planck Institute of Immunobiology and Epigenetics

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

Im Focus: Modelling leads to the optimum size for platinum fuel cell catalysts: Activity of fuel cell catalysts doubled

An interdisciplinary research team at the Technical University of Munich (TUM) has built platinum nanoparticles for catalysis in fuel cells: The new size-optimized catalysts are twice as good as the best process commercially available today.

Fuel cells may well replace batteries as the power source for electric cars. They consume hydrogen, a gas which could be produced for example using surplus...

Im Focus: The secret of mushroom colors

Mushrooms: Darker fruiting bodies in cold climates

The fly agaric with its red hat is perhaps the most evocative of the diverse and variously colored mushroom species. Hitherto, the purpose of these colors was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Flying Laptop satellite mission extended by two years - Successfully in orbit since July 14, 2017

16.07.2019 | Physics and Astronomy

New safer, inexpensive way to propel small satellites

16.07.2019 | Power and Electrical Engineering

UCI electrical engineering team develops 'beyond 5G' wireless transceiver

16.07.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>