Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Maryland engineers open door to big new library of tiny nanoparticles

27.04.2020

A new study expands the landscape of nanomaterials -- and what we can do with them

The development of bimetallic nanoparticles (i.e., tiny particles composed of two different metals that exhibit several new and improved properties) represents a novel area of research with a wide range of potential applications.


Via conventional bimetallic synthesis methods, only readily miscible metals (shown in green) can mix with Cu while others (shown in red) form phase-segregated structures (such as core-shell). In contrast, via the non-equilibrium synthesis, Cu and other metals can be kinetically trapped in homogeneously mixed nanoparticles, regardless of their thermodynamic miscibility.

Credit: Yang et al.

Now, a research team in the University of Maryland (UMD)'s A. James Clark School of Engineering has developed a new method for mixing metals generally known to be immiscible, or unmixable, at the nanoscale to create a new range of bimetallic materials.

Such a library will be useful for studying the role of these bimetallic particles in various reaction scenarios such as the transformation of carbon dioxide to fuel and chemicals.

The study, led by Professor Liangbing Hu, was published in Science Advances on April 24, 2020. Research Associate Chunpeng Yang served as first author on the study.

"With this method, we can quickly develop different bimetallics using various elements, but with the same structure and morphology," said Hu. "Then we can use them to screen catalytic materials for a reaction; such materials will not be limited by synthesizing difficulties."

The complex nature of nanostructured bimetallic particles makes mixing such particles using conventional methods difficult, for a variety of reasons - including the chemical makeup of the metals, particle size, and how metals arrange themselves at the nanoscale.

This new non-equilibrium synthesis method exposes copper-based mixes to a thermal shock of approximately 1300 degrees Celsius for .02 seconds and then rapidly cools them to room temperature. The goal of using such a short interval of thermal heat is to quickly trap, or 'freeze,' the high-temperature metal atoms at room temperature while maintaining their mixing state.

In doing so, the research team was able to prepare a collection of homogeneous copper-based alloys. Typically, copper only mixes with a few other metals, such as zinc and palladium - but by using this new method, the team broadened the miscible range to include copper with nickel, iron, and silver, as well.

"Using a scanning electron microscope and transmission electron microscope, we were able to confirm the morphology - how the materials formed - and size of the resulting Cu-Ag [copper-silver] bimetallic nanoparticles," Yang said.

This method will enable scientists to create more diverse nanoparticle systems, structures, and materials having applications in catalysis, biological applications, optical applications, and magnetic materials.

As a model system for rapid catalyst development, the team investigated copper-based alloys as catalysts for carbon monoxide reduction reactions, in collaboration with Feng Jiao, professor at the University of Delaware. The electro-catalysis of carbon monoxide reduction (COR) is an attractive platform, allowing scientists to use greenhouse gas and renewable electrical energy to produce fuels and chemicals.

"Copper is, thus far, the most promising monometallic electrocatalyst that drives carbon monoxide reduction to value-added chemicals," said Jiao. "The ability to rapidly synthesize a wide variety of copper-based bimetallic nanoalloys with a uniform structure enables us to conduct fundamental studies on the structure-property relationship in COR and other catalyst systems."

The non-equilibrium synthetic strategy can be extended to other bimetallic or metal oxide systems, too. Utilizing artificial intelligence-based machine learning, the new synthetic method will make rapid catalyst screening and rational design possible.

Media Contact

Melissa L. Andreychek
mandreyc@umd.edu
301-405-0292

 @UMDRightNow

http://www.umdrightnow.umd.edu/ 

Melissa L. Andreychek | EurekAlert!

More articles from Life Sciences:

nachricht Protein linked to cancer acts as a viscous glue in cell division
08.07.2020 | Rensselaer Polytechnic Institute

nachricht Enzymes as double agents: new mechanism discovered in protein modification
08.07.2020 | Westfälische Wilhelms-Universität Münster

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

On-chip spin-Hall nanograting for simultaneously detecting phase and polarization singularities

08.07.2020 | Physics and Astronomy

Engineers use electricity to clean up toxic water

08.07.2020 | Agricultural and Forestry Science

Atomic 'Swiss army knife' precisely measures materials for quantum computers

08.07.2020 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>