Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making a mark on mitochondria

19.02.2015

A fluorescent probe for labeling mitochondria helps scientists study fat-burning brown adipose tissue

A new cellular labeling strategy gives researchers an efficient tool for studying the development of tissue that could help prevent the onset of obesity and cardiovascular disease [1].


The fluorescent probe AIE-MitoGreen-1 reveals changes in mitochondrial organization in brown adipose cells as they mature over the course of a week.

Reproduced, with permission, from Ref. 1 © 2014 Royal Society of Chemistry

Most people think about fat in terms of the white adipose tissue that stores the body’s excess energy, and which steadily — and visibly — accumulates as one becomes out of shape or obese. However, there is another type of fat tissue that can prevent rather than promote weight gain.

“Brown adipose tissue not only stores fats, but also has the ability to burn fats to release energy as heat,” explains Bin Liu of the A*STAR Institute of Materials Research and Engineering.

Liu sees this tissue as a promising target for anti-obesity drugs, and her group set about designing a fluorescent molecule that could help scientists visualize the development of brown adipose cells. These cells can be characterized based on the number and organization of their mitochondria, the organelles that drive cellular metabolism.

However, existing mitochondrial dyes tend to absorb each other’s fluorescence at high concentrations, resulting in a weaker overall signal as they accumulate.

In collaboration with Hong Kong University of Science and Technology researcher Ben Zhong Tang, Liu’s team devised a fluorescent dye that exhibits ‘aggregation-induced emission’. “This means that the probe does not emit fluorescence in dilute solutions,” explains Liu, “but it becomes highly fluorescent when it accumulates in mitochondria, without any self-quenching effects.”

After 20 minutes of treatment with their AIE-MitoGreen-1 probe, Liu’s group achieved bright labeling of mitochondria in brown adipose cells that lasted for more than a day. This labeling approach also left cultured cells largely unharmed, whereas only 10 per cent of cells survived prolonged treatment with a commercially available mitochondrial dye. The researchers subsequently used AIE-MitoGreen-1 to monitor the development of brown adipose tissue from precursor cells, observing changes in cell shape and mitochondrial organization over seven days (see image).

Since the basic stages of brown adipose development are well characterized, this probe could help identify treatments that stimulate or impede this process. “We hope to use our probe to monitor the activity of brown adipose cells in response to various stimuli, such as drug intervention or temperature changes,” says Liu. Her group aims to further improve their probe so that it shines longer and brighter. Ultimately, she hopes to develop variants that fluoresce at near-infrared wavelengths, which can be detected deeper within living tissue. “We would apply these probes to long-term monitoring of brown adipose cells in animal models.”

Reference

[1] Gao, M., Sim, C. K., Leung, C. W. T., Hu, Q., Feng, G. et al. A fluorescent light-up probe with AIE characteristics for specific mitochondrial imaging to identify differentiating brown adipose cells. Chemical Communications 50, 8312–8315 (2014).


Associated links
A*STAR article

A*STAR Research | ResearchSEA
Further information:
http://www.researchsea.com

More articles from Life Sciences:

nachricht Mass spectrometry sheds new light on thallium poisoning cold case
14.12.2018 | University of Maryland

nachricht Protein involved in nematode stress response identified
14.12.2018 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>