Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magic Enzymes

28.08.2017

Enzymatic synthesis of psilocybin, the ingredient of magic mushrooms

Little fungi pack a punch: “Magic mushrooms” of the Psilocybe species produce psychoactive compounds that alter perception when ingested. Recently, the effects on the neuronal system caused by their ingredient psilocybin have attracted the interest of pharmacologists.

German scientists have now identified four of the enzymes responsible for the biosynthesis of psilocybin. In the journal Angewandte Chemie, they describe the biosynthetic pathway and introduce a synthetic route that could form the basis of biotechnological production.

For centuries, Central American cultures considered Psilocybe mushrooms to be divine and used them for spiritual purposes. More recently, they have been called magic mushrooms and used for their hallucinogenic effects. These mushroom drugs may soon also be in use as pharmaceuticals that treat the existential anxiety of advanced-stage cancer patients, depression, and nicotine addiction.

Their effects stem from tryptamines, which are chemical derivatives of the amino acid L-tryptophan and structural relatives of the neurotransmitters serotonin and melatonin. Among these, psilocybin is the primary chemical mushroom component. Psilocybin is an inactive precursor that is rapidly activated when consumed: splitting off a phosphate group results in the actual active ingredient, psilocin.

Although the structure of psilocybin has been known for about 60 years, it has not been possible to decode the enzymatic basis of its biosynthesis. Researchers working with Dirk Hoffmeister at the Friedrich Schiller University of Jena have now figured this out.

They have identified the four enzymes that transform the amino acidy L-tryptophan into psilocybin. Using genetic technology, the researchers were able to produce the enzymes in bacterial and mould fungi cultures and characterize them.

Based on this knowledge, they were also able to clarify the biosynthetic production route, which is different than previously supposed. In the first step of the biosynthesis, an unsusual type of tryptophan decarboxylase splits the carboxyl group off of the amino acid L-tryptophan.

A monooxygenase then introduces an alcohol group, to which a kinase subsequently adds a phosphate group. Finally, a methyl transferase adds two methyl groups stepwise to the amino group.

Starting with 4-hydroxy-L-tryptophan and using three of the four fungal enzymes, the scientists were able to enzymatically synthesize psilocybin by a simple method in a combined reaction. Given the pharmaceutical industry's renewed interest in psilocybin, these results may lay the foundation for its biotechnological production.

About the Author

Dirk Hoffmeister is Full Professor of Pharmaceutical Microbiology at the University of Jena and the Leibniz Institute for Natural Product Research and Infection Biology (Hans-Knöll-Institute) in Jena. His research focuses on the genetic and biochemical bases of bioactive component synthesis in fungi.

Author: Dirk Hoffmeister, Friedrich-Schiller-Universität Jena (Germany), http://www.pharmazie.uni-jena.de/Institut/Pharmazeutische+Mikrobiologie/Prof_+Dr_+Dirk+Hoffmeister.html

Title: Enzymatic Synthesis of Psilocybin

Angewandte Chemie International Edition
Permalink to the original article: https://doi.org/10.1002/anie.201705489 – Please use in your news piece to make sure altmetric.com picks it up and a link to your piece is shown on the journal's website.

Copy free of charge. We would appreciate a transcript of your article or a reference to it.
The original article is available from our online pressroom at http://pressroom.angewandte.org.
Contact: Editorial office: angewandte@wiley-vch.de
To be removed from this list, please e-mail us.

Angewandte Chemie is a journal of the Gesellschaft Deutscher Chemiker (German Chemical Society, GDCh) and is published by Wiley-VCH. It is one of the prime chemistry journals in the world. Celebrate the society's 150th anniversary with us and eminent speakers, among them four Nobel Laureates.

Angewandte Chemie International Edition, Postfach 101161, 69451 Weinheim, Germany.

Dirk Hoffmeister | Gesellschaft Deutscher Chemiker e.V.

More articles from Life Sciences:

nachricht Chemists create new route to PHAs: naturally degradable bioplastics
21.11.2019 | Colorado State University

nachricht Scientists first to develop rapid cell division in marine sponges
21.11.2019 | Florida Atlantic University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

Im Focus: Atoms don't like jumping rope

Nanooptical traps are a promising building block for quantum technologies. Austrian and German scientists have now removed an important obstacle to their practical use. They were able to show that a special form of mechanical vibration heats trapped particles in a very short time and knocks them out of the trap.

By controlling individual atoms, quantum properties can be investigated and made usable for technological applications. For about ten years, physicists have...

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

Scientists first to develop rapid cell division in marine sponges

21.11.2019 | Life Sciences

First detection of gamma-ray burst afterglow in very-high-energy gamma light

21.11.2019 | Physics and Astronomy

Research team discovers three supermassive black holes at the core of one galaxy

21.11.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>