Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Machine Learning Offers Insights into Evolution of Monkey Faces, Researchers Find

05.02.2015

Computers are able to use monkey facial patterns not only to correctly identify species, but also distinguish individuals within species, a team of scientists has found. Their findings, which rely on computer algorithms to identify guenon monkeys, suggest that machine learning can be a tool in studying evolution and help to identify the factors that have led to facial differentiation in monkey evolution.

“Studying the cues that species use to discriminate each other often poses a challenge to scientists,” explains James Higham, an assistant professor of anthropology at New York University and one of authors of the study, which appears in the journal “Proceedings of the Royal Society B”. “Many species are now rare and, in the case of these particular monkeys, they live high in the rainforest canopy, so are very difficult to reach.”


George Perry

Computers are able to use monkey facial patterns not only to correctly identify species, but also distinguish individuals within species, a team of scientists has found. Their findings, which rely on computer algorithms to identify guenon monkeys, above, suggest that machine learning can be a tool in studying evolution and help to identify the factors that have led to facial differentiation in monkey evolution.

“Driving our study was the premise that if a characteristic such as individual identity can be classified reliably from physical appearance, or what we call ‘visual signals’, then these signals may have evolved in part for the purpose of communicating this characteristic,” says study author William Allen, who undertook the work while at NYU, but who is now a post-doctoral researcher at the University of Hull (UK).

“We sought to test a computer’s ability to do something close to what a guenon viewing other guenons’ faces would do,” adds Allen. “We did so by taking measurements of visual attributes from photographs of guenon faces and asking a computer to try and separate different groups as accurately as possible on the basis of these measurements.”

Their study relied on more than 500 photographs of 12 species of guenons collected in various settings: in zoos in the United States and the United Kingdom and in a wildlife sanctuary in Nigeria. The guenons, the authors note, are a particularly interesting and visually striking group to study, with many closely related species that exhibit a remarkable diversity of colorful patterned faces.

The analysis focused on specific guenon visual signals—facial patterns generally as described using the ‘eigenface’ technique, a method used in computer vision for human facial recognition, as well as eyebrow patches and nose spots segmented from images. From here, the researchers tested whether or not an algorithm could accurately accomplish the following: identify individual guenons, classify them by species from among the 12 in the sample, and determine the age and sex of each individual.

Their results showed that the computer could employ both overall facial pattern and eyebrow patches and nose spots to correctly categorize species and identify individuals, but not their age or sex.

“The reason that machine learning cannot classify age and sex is because facial patterns do not seem to be different between males and females and do not seem to change as individuals age,” observes Higham. “This suggests that conveying these characteristics to others has not been an important factor in the evolution of guenon appearance.”

“In contrast, the fact that species and individual identity can both be reliably classified suggests that the ability to indicate these things to others has been a strong factor in the evolution of guenon faces,” he adds. “More broadly, these results demonstrate that faces are highly reliable for classification by species and that visual cues have played an important role in the radiation of this group into so many different species.”

Contact Information
James Devitt
Deputy Director for Media Relations
james.devitt@nyu.edu
Phone: 212-998-6808

James Devitt | newswise
Further information:
http://www.nyu.edu

More articles from Life Sciences:

nachricht New mechanisms regulating neural stem cells
21.02.2019 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht A landscape of mammalian development
21.02.2019 | Max-Planck-Institut für molekulare Genetik

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.

The Fraunhofer FEP, a provider of research and development services in the field of organic electronics, has long been involved in the development of...

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

Im Focus: Famous “sandpile model” shown to move like a traveling sand dune

Researchers at IST Austria find new property of important physical model. Results published in PNAS

The so-called Abelian sandpile model has been studied by scientists for more than 30 years to better understand a physical phenomenon called self-organized...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

A Volcanic Binge And Its Frosty Hangover

21.02.2019 | Earth Sciences

Cleaning 4.0 in the meat processing industry – higher cleaning efficiency

21.02.2019 | Trade Fair News

New mechanisms regulating neural stem cells

21.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>