Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Machine Learning Offers Insights into Evolution of Monkey Faces, Researchers Find

05.02.2015

Computers are able to use monkey facial patterns not only to correctly identify species, but also distinguish individuals within species, a team of scientists has found. Their findings, which rely on computer algorithms to identify guenon monkeys, suggest that machine learning can be a tool in studying evolution and help to identify the factors that have led to facial differentiation in monkey evolution.

“Studying the cues that species use to discriminate each other often poses a challenge to scientists,” explains James Higham, an assistant professor of anthropology at New York University and one of authors of the study, which appears in the journal “Proceedings of the Royal Society B”. “Many species are now rare and, in the case of these particular monkeys, they live high in the rainforest canopy, so are very difficult to reach.”


George Perry

Computers are able to use monkey facial patterns not only to correctly identify species, but also distinguish individuals within species, a team of scientists has found. Their findings, which rely on computer algorithms to identify guenon monkeys, above, suggest that machine learning can be a tool in studying evolution and help to identify the factors that have led to facial differentiation in monkey evolution.

“Driving our study was the premise that if a characteristic such as individual identity can be classified reliably from physical appearance, or what we call ‘visual signals’, then these signals may have evolved in part for the purpose of communicating this characteristic,” says study author William Allen, who undertook the work while at NYU, but who is now a post-doctoral researcher at the University of Hull (UK).

“We sought to test a computer’s ability to do something close to what a guenon viewing other guenons’ faces would do,” adds Allen. “We did so by taking measurements of visual attributes from photographs of guenon faces and asking a computer to try and separate different groups as accurately as possible on the basis of these measurements.”

Their study relied on more than 500 photographs of 12 species of guenons collected in various settings: in zoos in the United States and the United Kingdom and in a wildlife sanctuary in Nigeria. The guenons, the authors note, are a particularly interesting and visually striking group to study, with many closely related species that exhibit a remarkable diversity of colorful patterned faces.

The analysis focused on specific guenon visual signals—facial patterns generally as described using the ‘eigenface’ technique, a method used in computer vision for human facial recognition, as well as eyebrow patches and nose spots segmented from images. From here, the researchers tested whether or not an algorithm could accurately accomplish the following: identify individual guenons, classify them by species from among the 12 in the sample, and determine the age and sex of each individual.

Their results showed that the computer could employ both overall facial pattern and eyebrow patches and nose spots to correctly categorize species and identify individuals, but not their age or sex.

“The reason that machine learning cannot classify age and sex is because facial patterns do not seem to be different between males and females and do not seem to change as individuals age,” observes Higham. “This suggests that conveying these characteristics to others has not been an important factor in the evolution of guenon appearance.”

“In contrast, the fact that species and individual identity can both be reliably classified suggests that the ability to indicate these things to others has been a strong factor in the evolution of guenon faces,” he adds. “More broadly, these results demonstrate that faces are highly reliable for classification by species and that visual cues have played an important role in the radiation of this group into so many different species.”

Contact Information
James Devitt
Deputy Director for Media Relations
james.devitt@nyu.edu
Phone: 212-998-6808

James Devitt | newswise
Further information:
http://www.nyu.edu

More articles from Life Sciences:

nachricht Protein interaction helps Yersinia cause disease
21.08.2018 | Schwedischer Forschungsrat - The Swedish Research Council

nachricht Nanobot pumps destroy nerve agents
21.08.2018 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

A paper battery powered by bacteria

21.08.2018 | Power and Electrical Engineering

Protein interaction helps Yersinia cause disease

21.08.2018 | Life Sciences

Biosensor allows real-time oxygen monitoring for 'organs-on-a-chip'

21.08.2018 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>