Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Machine learning makes proteomics research more effective

29.05.2019

Using artificial intelligence, researchers at the Technical University of Munich (TUM) have succeeded in making the mass analysis of proteins from any organism significantly faster than before and almost error-free. This new approach is set to provoke a considerable change in the field of proteomics, as it can be applied in both basic and clinical research.

The genome of any organism contains the blueprints for thousands of proteins which control almost all the functions of life. Defective proteins lead to serious diseases, such as cancer, diabetes or dementia. Therefore, proteins are also the most important targets for drugs.


The authors Mathias Wilhelm, Tobias Schmidt and Siegfried Gessulat.

Image: A. Eckert / TUM

To better understand life processes and diseases and develop more appropriate therapies, it is necessary for as many proteins as possible to be analyzed simultaneously.

At present, mass spectrometry is used in order to determine the type and quantity of proteins in a biological system. However, the current methods of data analysis continue to produce many mistakes.

A team at the Technical University of Munich led by bioinformatics scientist Mathias Wilhelm and biochemist Bernhard Küster, Professor of Proteomics and Bioanalytics at the Technical University of Munich, has now succeeded in using proteomic data to train a neural network in such a way that it is able to recognize proteins much more quickly and with almost no errors.

A solution to a serious problem

Mass spectrometers do not measure proteins directly. They analyze smaller parts consisting of amino acid sequences with up to 30 building blocks. The measured spectra of these chains are compared with databases in order to assign them to a specific protein. However, the evaluation software can only use part of the information that the spectra contain. Therefore, certain proteins are not recognized or are recognized incorrectly.

"This is a serious problem," explains Küster. The neural network developed by the TUM team uses all the information of the spectra for the process of identification. "We miss fewer proteins and make 100 times fewer mistakes," says Bernhard Küster.

Applicable to all organisms

"Prosit", as the researchers call the AI software, is "applicable to all organisms in the world, even if their proteomes have never been examined before," explains Mathias Wilhelm. "This enables research which was previously inconceivable."

With the help of 100 million mass spectra, the algorithm has been so extensively trained that it can be used for all common mass spectrometers without any additional training. "Our system is the global leader in this field," says Küster.

A market worth billions

Clinics, biotech companies, pharmaceutical companies and research institutes are using high-performance devices of this kind; the market is already worth billions. With "Prosit", it will be possible to develop even more powerful instruments in the future. Researchers and physicians will also be better and faster able to search for biomarkers in patients' blood or urine, or monitor therapies for their effectiveness.

The researchers also have high hopes for fundamental research. "The method can be used to track down new regulatory mechanisms in cells," says Küster. "We hope to gain a considerable amount of knowledge here, which, in the medium and long term, will be reflected in the treatment of diseases suffered by humans, animals and plants."

Wilhelm also expects that "AI methods such as Prosit will soon change the field of proteomics , as they can be used in almost every area of protein research"

Further information:


The study was carried out in cooperation with the companies JPT (Berlin), SAP (Potsdam) and ThermoFisher Scientific (Bremen). The project is funded by the German Federal Ministry of Education and Research (BMBF) as part of the ProteomeTools project. Prosit is available via ProteomicsDB, which is funded by the BMBF in the scope of the DIAS project.

http://www.proteomicsdb.org
http://www.proteomicsdb.org/prosit
http://www.proteometools.org/

Wissenschaftliche Ansprechpartner:

Dr. Mathias Wilhelm und Prof. Dr. Bernhard Küster
Professorship for Proteomics and Bioanalytics
Technical University of Munich
Emil Erlenmeyer Forum 5, 85354 Freising, Germany
Tel.: +49 8161 71 5696 – E-mail: mathias.wilhelm@tum.de; kuster@tum.de
http://www.wzw.tum.de/proteomics/

Originalpublikation:

Prosit: proteome-wide prediction of peptide tandem mass spectra by deep learning
Siegfried Gessulat, Tobias Schmidt, Daniel Paul Zolg, Patroklos Samaras, Karsten Schnatbaum, Johannes Zerweck, Tobias Knaute, Julia Rechenberger, Bernard Delanghe, Andreas Huhmer, Ulf Reimer, Hans-Christian Ehrlich, Stephan Aiche, Bernhard Küster und Mathias Wilhelm
Nature Methods, 27.05.2019 – DOI: 10.1038/s41592-019-0426-7
https://doi.org/10.1038/s41592-019-0426-7

Weitere Informationen:

https://www.tum.de/nc/en/about-tum/news/press-releases/details/article/35470/ Link to the press release

http://www.tum.de/nc/en/about-tum/news/press-releases/details/article/35471/ Further press release on the use of artificial intelligence in genome research (appearing later today)

Dr. Ulrich Marsch | Technische Universität München

More articles from Life Sciences:

nachricht If Machines Could Smell ...
19.07.2019 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

nachricht Algae-killing viruses spur nutrient recycling in oceans
18.07.2019 | Rutgers University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Better thermal conductivity by adjusting the arrangement of atoms

Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone. The scientists will publish the results shortly in the journal Nano Letters.

In the electronics and computer industry, components are becoming ever smaller and more powerful. However, there are problems with the heat generation. It is...

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Heat transport through single molecules

19.07.2019 | Physics and Astronomy

Welcome Committee for Comets

19.07.2019 | Earth Sciences

Better thermal conductivity by adjusting the arrangement of atoms

19.07.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>