Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Inert Nitrogen Forced to React with Itself

22.03.2019

Direct coupling of two molecules of nitrogen: chemists from Würzburg and Frankfurt have achieved what was thought to be impossible. This new reaction is reported in Science magazine and opens new possibilities for one of the most inert molecules on earth.

Constituting over 78 % of the air we breathe, nitrogen is the element found the most often in its pure form on earth. The reason for the abundance of elemental nitrogen is the incredible stability and inertness of dinitrogen (N2), a molecule comprising two nitrogen atoms and the form in which most nitrogen exists.


For the first time, two molecules of atmospheric nitrogen (blue, middle) are coupled directly to each other in research by chemists from Würzburg and Frankfurt.

Picture: Dr. Rian Dewhurst / Dr. Marc-André Légaré

Only in very harsh environments, such as in the ionosphere, can dinitrogen be assembled into longer nitrogen chains, forming N4 ions with very short lifetimes.

Despite the inertness of dinitrogen, nature is able to use it as an important feedstock for all kinds of living organisms. In biological systems, the very strong nitrogen-nitrogen bond in N2 can be cleaved and ammonia (NH3) can be produced, which then becomes the source of nitrogen for the entire food chain on Earth.

Completely new chemical reaction

Imitating nature, humans use the all-important Haber-Bosch process to break down nitrogen into ammonia, which can then be further processed to produce fertilizers and to make nitrogen available for the production of pigments, fuels, materials, pharmaceuticals and beyond.

The production of compounds that contain chains of two, three or four nitrogen atoms – which are notably of pharmaceutical importance in vaso-dilating drugs, for example – requires the reassembly of mono-nitrogen molecules such as ammonia, because no direct reaction exists that can directly connect molecules of dinitrogen.

This week, research teams from Germany, from Julius-Maximilians-Universität Würzburg (JMU) and Goethe University in Frankfurt, report a completely new chemical reaction in Science magazine. The new process uses boron-containing molecules to directly couple two molecules of N2 into a N4 chain.

For the first time, they have succeeded in directly coupling two molecules of atmospheric nitrogen N2 with each other without first having to split the dinitrogen into ammonia, thus bypassing the Haber-Bosch process. This new method could enable the direct generation of longer nitrogen chains.

Opening the way to new chemistry

The new synthesis pathway functions under very mild conditions: at minus 30 degrees Celsius and under a moderate pressure of nitrogen (around four atmospheres). It also does not require a transition metal catalyst, unlike almost all biological and industrial reactions of nitrogen.

"This will open the way to a chemistry with which completely new chain-form nitrogen molecules can be synthesized," says JMU chemistry Professor Holger Braunschweig. For the first time, nitrogen chains containing a special variant of nitrogen (15N isotope) can also be easily produced.

This scientific breakthrough is based on the experimental work of the JMU postdoc Dr. Marc-André Légaré and the doctoral candidate Maximilian Rang.

Theoretical insight provided by the Goethe University

Doctoral candidate Julia Schweizer and Professor Max Holthausen of Goethe University Frankfurt were responsible for the theoretical part of the work. They dealt with the question of how the four nitrogen atoms are chemically connected.

"With the help of complex computer simulations, we were able to understand the unexpectedly complicated binding conditions in these beautiful molecules. This will enable us to predict the future stability of such nitrogen chains and support our experimental partners in the further development of their discovery," says the Frankfurt chemistry professor.

Next steps in the research

The research teams have taken aim at incorporating the new nitrogen chain molecules into organic molecules that are relevant for medicine and pharmacy, especially enabling the production of their 15N analogues.

The research into reactions of nitrogen was supported by the German Research Foundation (DFG). The team members Dr. Marc-André Légaré and Dr. Guillaume Bélanger-Chabot are funded by postdoctoral fellowships from the Natural Sciences and Engineering Research Council of Canada and the Alexander von Humboldt Foundation, respectively.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Holger Braunschweig, Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, h.braunschweig@uni-wuerzburg.de

Prof. Dr. Max Holthausen, Institute for Inorganic and Analytical Chemistry, Goethe University Frankfurt, max.holthausen@chemie.uni-frankfurt.de

Originalpublikation:

“The Reductive Coupling of Dinitrogen”, Marc-André Légaré, Maximilian Rang, Guillaume Bélanger-Chabot, Julia I. Schweizer, Ivo Krummenacher, Rüdiger Bertermann, Merle Arrowsmith, Max C. Holthausen, and Holger Braunschweig. Science, 22. März 2019, DOI: 10.1126/science.aav9593

Robert Emmerich | Julius-Maximilians-Universität Würzburg
Further information:
http://www.uni-wuerzburg.de

More articles from Life Sciences:

nachricht New eDNA technology used to quickly assess coral reefs
18.04.2019 | University of Hawaii at Manoa

nachricht New automated biological-sample analysis systems to accelerate disease detection
18.04.2019 | Polytechnique Montréal

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>