Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How we decide on where to go

09.08.2018

Neuroscientists discover a mechanism for brain-wide communication when selecting a route towards a destination

Route planning is a key element for spatial navigation. Neurons in the hippocampus and surrounding structures, such as place cells or grid cells, become active depending on the animal’s instantaneous position, and are considered part of internal maps in the brain.


The prefrontal-thalamo-hippocampal circuit is involved when a rat makes a choice of the next trajectory at the upcoming T-junction and the supramammillary nucleus facilitates transfer of information.

Max Planck Institute for Brain Research

However, the information from these neurons is not sufficient for goal-directed navigation. To determine the next move toward a destination, these maps must interact with action planning systems in different cortical areas.

Hiroshi Ito, research group leader at the Max Planck Institute for Brain Research, not only has identified the prefrontal-thalamo-hippocampal circuit involved in this process, but has also provided proof for the communication mechanism between the brain areas, pointing to the supramammillary nucleus as a mediator to all three structures. He published his results in the latest issue of Neuron.

Finding our way to an unknown or even known location is a challenge we face nearly every day. In order to successfully navigate, we not only need to be aware of our current location and map our surrounding, but also need to decide which way to go. Besides humans, a wide range of other species from the animal kingdom, including mammals, need to make this choice.

While 2014 Nobel Laureates John O’Keefe, as well as May-Britt Moser and Edvard Moser have identified the so-called place cells and grid cells in the mammalian cortex to determine the position in a specific environment, information about the brain areas and mechanism which facilitate the decision to take the correct route to the destination is still under investigation.

Previous work by Hiroshi Ito at the Moser’s Lab already identified a neural circuit that functionally links between the brain’s spatial representation system in the hippocampus and the action planning system in the prefrontal cortex. The neuroscientists found that a thalamic nucleus works as a connecting link between the prefrontal cortex and the hippocampus.

The prefrontal-thalamo-hippocampal circuit allows transfer of information about the next route plans from the prefrontal cortex to the hippocampus. As animals need to cope with changing behavioral demands, multiregional interactions in the brain should be accordingly dynamic. The underlying mechanism for the communication between the three-fold connections has not been elucidated up till now.

Ito and colleagues now provide proof that cortical synchrony is a key mechanism for behavior-dependent functional coupling in the prefrontal-thalamo-hippocampal circuit. Hiroshi Ito: “The key idea of cortical synchrony for dynamic cortical interactions dates back from the 1980s and was proposed by my respected colleague Wolf Singer. In accordance with his theory, we found enhancement of spike-time coordination at the theta frequency band (6-12 Hz) in the prefrontal-thalamo-hippocampal circuit whenever the rodents were required to choose a next movement direction at a T-junction of our maze.”

The prefrontal cortex, the thalamic nucleus reuniens, and the hippocampus are however anatomically quite distant from each other, which raises a question of how these structures can interact in an efficient way. The authors found that neurons in the supramammillary nucleus fire at the theta rhythm and give rise to inputs in all three structures of the circuit. “We could even proof the importance of this structure when we deactivated the supramammillary nucleus via optogenetics. Theta-rhythm spike coordination was then impaired, which resulted in failure of communication from the prefrontal cortex to the hippocampus about the next route.”, Ito says.

Researchers now could shed light on how route decision-making in the mammalian brain is coordinated and how closely these three brain areas work together. Ito says: “Spike-time coordination, or synchrony, is likely the key mechanism for gating signal flow between brain regions, controlling operations of the cortex for flexible behaviors of animals.

Originalpublikation:

Ito, H.T., Moser, E.I. and Moser, M.-B. (2018). Supramammillary Nucleus Modulates Spike-Time Coordination in the Prefrontal Thalamo-Hippocampal Circuit during Navigation. Neuron 99, 1-12.

Weitere Informationen:

https://www.sciencedirect.com/science/article/pii/S0896627318305956?via%3Dihub
https://brain.mpg.de/research/memory-and-navigation-circuits-group.html

Dr. Arjan Vink | Max-Planck-Institut für Hirnforschung

More articles from Life Sciences:

nachricht Identifying the blind spots of soil biodiversity
04.08.2020 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht AI & single-cell genomics
04.08.2020 | Helmholtz Zentrum München - German Research Center for Environmental Health

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

Im Focus: NYUAD astrophysicist investigates the possibility of life below the surface of Mars

  • A rover expected to explore below the surface of Mars in 2022 has the potential to provide more insights
  • The findings published in Scientific Reports, Springer Nature suggests the presence of traces of water on Mars, raising the question of the possibility of a life-supporting environment

Although no life has been detected on the Martian surface, a new study from astrophysicist and research scientist at the Center for Space Science at NYU Abu...

Im Focus: Manipulating non-magnetic atoms in a chromium halide enables tuning of magnetic properties

New approach creates synthetic layered magnets with unprecedented level of control over their magnetic properties

The magnetic properties of a chromium halide can be tuned by manipulating the non-magnetic atoms in the material, a team, led by Boston College researchers,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

First radio detection of an extrasolar planetary system around a main-sequence star

04.08.2020 | Physics and Astronomy

The art of making tiny holes

04.08.2020 | Physics and Astronomy

Early Mars was covered in ice sheets, not flowing rivers

04.08.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>