Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How the grid cell system of the brain maps mental spaces

12.10.2018

How exactly the grid cell system works in the human brain, and in particular with which temporal dynamics, has until now been speculation. A much-discussed possibility is that the signals from these cells create maps of “cognitive spaces” in which humans mentally organize and store the complexities of their internal and external environments. A European–American team of scientists has now been able to demonstrate, with electrophysiological evidence, the existence of grid-like activity in the human brain.

It has long been known that so-called place cells in the human hippocampus are responsible for coding one’s position in space. A related type of brain cell, called grid cells, encodes a variety of positions that are evenly distributed across space. This results in a kind of honeycomb pattern tiling the space.


A related type of brain cell, called grid cells, encodes a variety of positions that are evenly distributed across space.

© iStock.com/matejmo


Prof. Christian Doeller, new director of MPI CBS

© TiTT Melhuus/ Kavli Institute for Systems Neuroscience

The cells exhibiting this pattern were discovered in the entorhinal cortex. How exactly the grid cell system works in the human brain, and in particular with which temporal dynamics, has until now been speculation. A much-discussed possibility is that the signals from these cells create maps of “cognitive spaces” in which humans mentally organize and store the complexities of their internal and external environments.

A European–American team of scientists has now been able to demonstrate, with electrophysiological evidence, the existence of grid-like activity in the human brain. Under the direction of Prof. Christian Doeller of the Max Planck Institute for Human Cognitive and Brain Sciences (MPI CBS) in Leipzig and Dr. Tobias Staudigl of the Donders Institute for Brain, Cognition and Behavior, Radboud University, The Netherlands, researchers used various methods to visualize grid cell activity while subjects explored images of everyday scenes.

"We assume that these spatial coding principles in the brain form the basis of higher cognitive performance—here in this study, in the field of perception, but possibly also in decision-making or even in social interaction," explained Prof. Doeller, who is now continuing his research as the new director of the MPI CBS in Leipzig.

To demonstrate the dynamics of the brain activity, the scientists performed independent measurements using two different methods. Thirty-six healthy participants were scanned using magnetoencephalography (MEG) and intracranial electroencephalography (EEG) was measured in an epileptic patient. During an MEG scan, subjects sit under a kind of helmet that measures magnetic fields caused by the electrical currents of active nerve cells.

"This enabled us to record data that is an expression of the momentary total activity of the brain, without any delay" explains Tobias Staudigl, first author of the study. He is currently conducting research at the Cedars-Sinai Medical Center in Los Angeles (USA). The participants viewed 200 pictures containing both indoor and outdoor scenes. "In addition to the MEG measurements, we also recorded their eye movements using an eye-tracker to determine how they visually explored the scenes of the images shown."

In the case of the epileptic patient, the researchers took advantage of the fact that for diagnostic purposes, prior to a brain surgery, he had been implanted with electrodes that could directly record electrical activity in the brain. He was asked to look at similar pictures with indoor and outdoor scenes, as well as with animals and faces. His eye movements were also measured, allowing the scientists to obtain an additional dataset to record the activation patterns of the cells.

"We looked at whether the activity patterns of the entire grid cell system have a specific structure, as has been assumed for a few years," reports Prof. Doeller. "By showing the subjects pictures of visual scenes, we were able to demonstrate that. This is the first time that this effect has been measured by MEG and EEG recordings, and it opens up many exciting opportunities for further research. For example, it could lead to new biomarkers for diseases such as Alzheimer's in the future. This is because in young adults with an increased risk of Alzheimer's disease, we have already seen that the activity of the grid cell system is reduced."

Wissenschaftliche Ansprechpartner:

Prof. Dr. Christian Doeller
Director MPI CBS
Telefon: +49 341 9940-2275
Fax: +49 341 9940-2204
E-Mail: doeller@cbs.mpg.de

Dr. Tobias Staudigl
Cedars-Sinai Medical Center, USA
E-Mail: tobias.stdgl@gmail.com

Originalpublikation:

Tobias Staudigl, Marcin Leszczynski, Joshua Jacobs, Sameer A. Sheth, Charles E. Schroeder, Ole Jensen, Christian F. Doeller (2018)
"Hexadirectional modulation of high-frequency electrophysiological activity in the human anterior medial temporal lobe maps visual space"
https://www.cell.com/current-biology/fulltext/S0960-9822(18)31260-0

Weitere Informationen:

http://www.cbs.mpg.de/970159/20181011-01

Bettina Hennebach | Max-Planck-Institut für Kognitions- und Neurowissenschaften

More articles from Life Sciences:

nachricht Why developing nerve cells can take a wrong turn
04.06.2020 | Universität zu Köln

nachricht Innocent and highly oxidizing
04.06.2020 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Small Protein, Big Impact

In meningococci, the RNA-binding protein ProQ plays a major role. Together with RNA molecules, it regulates processes that are important for pathogenic properties of the bacteria.

Meningococci are bacteria that can cause life-threatening meningitis and sepsis. These pathogens use a small protein with a large impact: The RNA-binding...

Im Focus: K-State study reveals asymmetry in spin directions of galaxies

Research also suggests the early universe could have been spinning

An analysis of more than 200,000 spiral galaxies has revealed unexpected links between spin directions of galaxies, and the structure formed by these links...

Im Focus: New measurement exacerbates old problem

Two prominent X-ray emission lines of highly charged iron have puzzled astrophysicists for decades: their measured and calculated brightness ratios always disagree. This hinders good determinations of plasma temperatures and densities. New, careful high-precision measurements, together with top-level calculations now exclude all hitherto proposed explanations for this discrepancy, and thus deepen the problem.

Hot astrophysical plasmas fill the intergalactic space, and brightly shine in stellar coronae, active galactic nuclei, and supernova remnants. They contain...

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Why developing nerve cells can take a wrong turn

04.06.2020 | Life Sciences

The broken mirror: Can parity violation in molecules finally be measured?

04.06.2020 | Physics and Astronomy

Innocent and highly oxidizing

04.06.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>