Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How intestinal cells renew themselves – the role of Klumpfuss in cell differentiation

21.10.2019

Stem cells are essential for homeostasis and cell renewal in organs like skin, lung or intestine. During the course of life, their function decreases steadily, making this decline a main factor for the development of age-associated diseases. Researchers of the Leibniz Institute on Aging in Jena, Germany, and their colleagues of the Buck Institute for Research on Aging in Novato, USA, investigated the mechanisms of intestinal cell renewal in the model organism Drosophila. Their results show that the transcription factor Klumpfuss plays a key role in this process by precisely regulating the differentiation of cell types in the fly intestine.

Stem cells react to tissue damage with an increase in their proliferation rate, leading to the production of new differentiated cells. Balance between cell loss and cell renewal through strict control of stem cell division guarantees the maintenance of organ size and function.


The transcription factor Klumpfuss (Klu) together with Notch signaling regulates cell differentiation of adult stem cells in the intestine of the fruit fly (Drosophila melanogaster)

(Graphic: Magdalena Voll / FLI)

Precise control of differentiation in adult stem cell lines is important for the development and maintenance of tissue homeostasis. Stem cell dysfunction can disturb this process, which can lead to tissue degeneration and cancer.

The researchers studied the differentiation of adult stem cells during tissue homeostasis in the midgut of the fruit fly (Drosophila melanogaster) because it bears many similarities with the human gastrointestinal tract in both structure and function.

Injuries or infections lead to damage of the intestinal mucosa, which results in an increase in proliferation and differentiation of the intestinal stem cells (ISCs) to replace damaged cells and restore homeostasis.

Disruption of normal cell differentiation leads to impairment of intestinal function, as can be observed in the aging intestine. How cell differentiation is exactly regulated has not been known yet.

Researchers of the Leibniz Institute on Aging – Fritz Lipmann Institute (FLI) in Jena, Germany, together with colleagues of the Buck Institute for Research on Aging in Novato, USA, have identified a novel player in the regulation of cell renewal and differentiation in the midgut of the model organism Drosophila.

“With its stem cells, the intestine is able to regenerate itself continuously and to ensure the function and integrity of the tissue during the lifespan of an organism”, says Dr. Jerome Korzelius, first author of the study published in Nature Communications.

Asymmetric cell division of intestinal stem cells

Asymmetric division of ISCs is crucial for the process of cell renewal. An ISC renews by dividing into another stem cell and an enteroblast (EB) daughter cell. This daughter cell can then differentiate into two different types of differentiated cells depending on signaling cues: absorptive enterocytes (EC), cells that take up nutrients and are responsible for immune defense or enteroendocrine cells (EE) that produce gastrointestinal hormones. Recent work has shown that lineage choice in these EB daughter cells is likely more complex than previously thought.

Transcription factor Klumpfuss as regulator

The researchers discovered that the transcription factor Klumpfuss (Klu), which is related to the mammalian tumor-suppressor gene “Wilms’ Tumor 1” (WT1), plays an important role in the adult Drosophila midgut for the lineage choice of EBs. “We found Klu to be expressed specifically in EBs to regulate cellular differentiation towards the enterocyte lineage”, tells Dr. Korzelius, who is currently working at the Max Planck Institute for Biology of Ageing in Cologne, Germany. Klu suppresses the differentiation of enteroendocrine cells from EBs by downregulating genes necessary for EE differentiation. Therefore, a loss of Klu in the enteroblasts leads to differentiation of EBs in EE cells.

Interplay with Notch signaling

Furthermore, the researchers found that Klu and Notch signaling together play a role in ISC division and differentiation. ISCs produce the Notch-ligand Delta and activate Notch in the enteroblast daughter cell, the precursor of mature enterocytes.

Loss of Notch in ISC lineages leads to the development of tumors, likely because of impaired EB differentiation that leads to an increased frequency of symmetric divisions and excess EE differentiation. During EB differentiation, the transcription factor Klu acts to control Notch target gene expression. This control of Notch target genes by Klu adds another layer of regulation to this complex pathway, which is also important in many diseases in humans.

“Our results give a mechanistic insight into how cell differentiation in the Drosophila intestine is regulated”, summarizes Dr. Heinrich Jasper, senior author of the study. These are important insights into the control mechanisms of tissue regeneration that are also relevant for mammals, including humans.

Publication
The WT1-like transcription factor Klumpfuss maintains lineage commitment of enterocyte progenitors in the Drosophila intestine. Korzelius J, Azami S, Ronnen-Oron T, Koch P, Baldauf M, Meier E, Rodriguez-Fernandez IA, Groth M, Sousa-Victor P, Jasper H. Nat Commun. 2019 10(1), 4123. doi: 10.1038/s41467-019-12003-0.

Contact
Magdalena Voll
Press and Public Relations
Phone: 03641-656373, Email: presse@leibniz-fli.de

Originalpublikation:

The WT1-like transcription factor Klumpfuss maintains lineage commitment of enterocyte progenitors in the Drosophila intestine. Korzelius J, Azami S, Ronnen-Oron T, Koch P, Baldauf M, Meier E, Rodriguez-Fernandez IA, Groth M, Sousa-Victor P, Jasper H. Nat Commun. 2019 10(1), 4123. doi: 10.1038/s41467-019-12003-0.

Weitere Informationen:

http://www.leibniz-fli.de - Website Leibniz Institute on Aging - Fritz Lipmann Institute Jena (FLI)

Dr. Kerstin Wagner | idw - Informationsdienst Wissenschaft

Further reports about: Alternsforschung Drosophila FLI ISC stem cells transcription factor

More articles from Life Sciences:

nachricht Structure of a mitochondrial ATP synthase
19.11.2019 | Science For Life Laboratory

nachricht Mantis shrimp vs. disco clams: Colorful sea creatures do more than dazzle
19.11.2019 | University of Colorado at Boulder

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atoms don't like jumping rope

Nanooptical traps are a promising building block for quantum technologies. Austrian and German scientists have now removed an important obstacle to their practical use. They were able to show that a special form of mechanical vibration heats trapped particles in a very short time and knocks them out of the trap.

By controlling individual atoms, quantum properties can be investigated and made usable for technological applications. For about ten years, physicists have...

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

Structure of a mitochondrial ATP synthase

19.11.2019 | Life Sciences

The measurements of the expansion of the universe don't add up

19.11.2019 | Physics and Astronomy

Ayahuasca compound changes brainwaves to vivid 'waking-dream' state

19.11.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>