Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

GM-CSF required for the immune attack in multiple sclerosis

26.04.2011
The neutralization of the cytokine GM-CSF could halt the development of multiple sclerosis.

This was demonstrated by the research team of the immunologist Burkhard Becher at the University of Zurich in an animal model. Unlike other known cytokines, they write in the journal Nature Immunology, this messenger substance is essential for the development of the disease. By the end of this year, a clinical trial will be launched in which GM-CSF is to be neutralized in MS patients.

The immune systems main task is to protect us from pathogenic microorganisms. To do so, an armada of immune cells is diligently instructed to search for invading pathogens. The ability of immune cells to communicate with one another is vital to this protection. Mistakes in the communication can lead to ‘misunderstandings’ and an erroneous attack against ones own tissues. Such is the case in autoimmune diseases such as multiple sclerosis (MS), rheumatoid arthritis and juvenile diabetes, where the immune system inadvertently attacks the body. So-called helper T cells are chiefly responsible for the fatal immune response.

There are various sub-classes of helper T cells with different tasks and responsibilities. Clinicians and researchers have long been trying to ascertain which sub-class the rogue T cells that attack the body’s own organs in autoimmune diseases actually belong to. T cells release certain messenger substances, known as cytokines, which in turn coordinate the appropriate immune response. Until now, the type of T-cell and, above all, the relevant cytokine that causes the inflammation in the brain and spinal cord were not known.

The research team of Professor Burkhard Becher has spent six years testing the relevant cytokines by a process of elimination in transgenic mouse models of multiple sclerosis. Over the years, they were able to cross many factors off the list before eventually hitting the jackpot with GM-CSF (granulocyte macrophage colony-stimulating factor). GM-CSF is produced by a newly discovered subclass of helper T cells. “The MS-like disease could not be induced in mice without GM-CSF,” says Becher. “What’s more, the disease could even be cured in MS mice if the cytokine was neutralized.”

GM-CSF is not a new cytokine; we already knew that it can cause or aggravate inflammation. Apart from GM-CSF, however, all the other cytokines studied thus far only played a minor role. “GM-CSF is therefore the first T-cell cytokine that’s essential for the initiation of an inflammatory reaction,” says Becher. Furthermore, the researchers were able to demonstrate that the GM-CSF delivered to the brain by T cells activates the recruitment of tissue-damaging scavenger cells. “Without scavenger cells like these, the inflammation can’t really get going in the first place and the neutralization of GM-CSF can even reverse the inflammatory process,” says the immunologist.

Patients suffering from rheumatoid arthritis are currently being treated with neutralizing antibodies against GM-CSF in a clinical trial. A trial with MS patients is due to begin at the end of 2011. “We’re extremely hopeful,” says Becher enthusiastically. “But whether this form of therapy will actually help MS patients remains to be seen. Quiet optimism is the way to go,” he explains.

Irrespective of the clinical trial, the team expects the study to have a significant impact on basic and clinical research. “We’re really making headway; we now understand much better how an inflammatory lesion can develop in the brain.”

References:
Codarri, L., Gyülveszi, G., Magnenat, L., Hesske, L., Fontana, A., Suter, T., and Becher, B. RORgt drives production oft he cytokine GM-CSF in helper T cells, which is essential for the effector phase of autoimmune neuroinflammation. Nature Immunology, doi: 10.1038/ni.2027
Contact:
Prof. Burkhard Becher
Institute of Experimental Immunology
University of Zurich
Tel. +41-44-635-3701
Email: becher@immunology.uzh.ch

Beat Müller | Universität Zürich
Further information:
http://www.mediadesk.uzh.ch
http://www.uzh.ch

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>