Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Giraffe Babies Inherit Spot Patterns from their Mothers

02.10.2018

Some features of a giraffe’s spot pattern are passed on from mother to calf, a new study led by researchers from University of Zurich and Penn State reveals. The study also shows that the survival of young giraffes is linked to their spot patterns, which may help provide camouflage from predators. The study also highlights a new set of tools that can be used to study the markings of other wild animals.

Giraffe spot patterns are complex and can be quite different from one animal to another. “Complex markings can help animals evade predators, regulate their temperature, or recognize family or individuals. All of this can affect their ability to survive and reproduce,” says Monica Bond, doctoral candidate in evolutionary biology and environmental studies at the University of Zurich and lead author of the study.


Giraffe babies inherit spot patterns from their mothers.

Derek Lee/Wild Nature Institute

Giraffe spot shapes are inherited

Together with Derek E. Lee from Penn State University, she analyzed survival records and photos of spots of Masai giraffes. Giraffes have a uniformly dark grey skin color, but their spots are highly variable in color and shape, ranging from nearly round with very smooth edges to elliptic with jagged or lobed edges.

Spot patterns do not change as an animal ages, which allows researchers to identify individuals based on their unique patterns. The researchers found that two of 11 spot traits measured were significantly similar in the mother animals and their calves: Circularity, i.e. how close the spot is to a perfect circle, and solidity, which refers to how smooth and complete the edges are.

Large spots improve chances of survival

The study also found that newborn giraffes with larger and irregularly shaped spots had a better chance of surviving the first few months of life. This increased survival rate likely indicates that these young animals have better camouflage, but it could also be related to other survival-enhancing factors, such as temperature regulation or visual communication. “We were able to show that spot patterns affect the survival of young animals and that they’re inherited – passed from a mother to its calf,” says Bond.

Study of animals in the wild

Anne Innis Dagg, the first giraffe field researcher in Africa, presented evidence in 1968 that the shape, number, area, and color of spots in giraffe coat patterns may be heritable. “But her analysis was based on a small population of zoo animals,” says Monica Bond. “We studied giraffes in the wild and used modern imaging and analysis techniques to confirm her conclusions.”

New methods to study animals

The study also highlights how modern imaging software and statistical methods can be used to reliably analyze complex coat patterns. “I hope that other scientists will use the same tools to measure mammal coat patterns to advance our understanding of what these patterns mean,” says Lee. “Quantifying heritability and fitness consequences of variation in coat patterns could help us understand how and why complex coat patterns evolve in wild animals.”

Wissenschaftliche Ansprechpartner:

Monica Bond, Ph.D. Student
Department of Evolutionary Biology and Environmental Studies
University of Zurich
Phone: +41 44 635 52 81
E-mail: monica.bond@ieu.uzh.ch

Originalpublikation:

Derek E. Lee, Douglas R. Cavener and Monica L. Bond. Seeing spots: quantifying mother-
offspring similarity and assessing fitness consequences of coat pattern traits in a wild population of giraffes (Giraffa camelopardalis). PeerJ. DOI 10.7717/peerj.5690

Beat Müller | Universität Zürich
Further information:
http://www.uzh.ch/

More articles from Life Sciences:

nachricht Turning carbon dioxide into liquid fuel
06.08.2020 | DOE/Argonne National Laboratory

nachricht Tellurium makes the difference
06.08.2020 | Friedrich-Schiller-Universität Jena

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ScanCut project completed: laser cutting enables more intricate plug connector designs

Scientists at the Fraunhofer Institute for Laser Technology ILT have come up with a striking new addition to contact stamping technologies in the ERDF research project ScanCut. In collaboration with industry partners from North Rhine-Westphalia, the Aachen-based team of researchers developed a hybrid manufacturing process for the laser cutting of thin-walled metal strips. This new process makes it possible to fabricate even the tiniest details of contact parts in an eco-friendly, high-precision and efficient manner.

Plug connectors are tiny and, at first glance, unremarkable – yet modern vehicles would be unable to function without them. Several thousand plug connectors...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Rare Earth Elements in Norwegian Fjords?

06.08.2020 | Earth Sciences

Anode material for safe batteries with a long cycle life

06.08.2020 | Power and Electrical Engineering

Turning carbon dioxide into liquid fuel

06.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>