Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genome Duplication Drives Evolution of Species

25.09.2018

Polyploid plants have a duplicate set of chromosomes. As a result, large-scale genetic changes are therefore possible in the new species, making it more adaptable in comparison with the parental species, as has now been proven by UZH researchers with rockcress.

Many wild and cultivated plants arise through the combination of two different species. The genome of these so-called polyploid species often consists of a quadruple set of chromosomes - a double set for each parental species - and thus has about twice as many genes as the original species.


Arabidopsis kamchatica

Image: Lucas Mohn, UZH

About 50 years ago, evolutionary biologists postulated that this process drives evolution, leading to new species. Due to the size and complexity of such genomes, however, proving this theory on a genetic level has been difficult.

Evolutionary biological theory confirmed by experiment

An international team of researches headed up by Timothy Paape and Kentaro Shimizu from the Department of Evolutionary Biology and Environmental Studies of the University of Zurich (UZH) has now been able to provide the experimental confirmation of this theory.

To do so, the scientists from Switzerland and Japan used plant species Arabidopsis kamchatica, which is part of the rockcress genus. They sequenced the genome of 25 different individuals of the polyploid species from various regions of the world, as well as 18 different individuals of its parental species in order to study its natural genetic diversity.

Genomes sequenced thanks to latest technologies

Arabidopsis kamchatica arose through the natural hybridization of the two parental species A. halleri and A. lyrata between 65,000 and 145,000 years ago. With 450 million base pairs, its genome is somewhat small for a polyploid plant, but still very complex. Using state-of-the-art sequencing methods and technology as well as bioinformatics tools, the researchers were able to determine the genetic sequence of the plant individuals.

Advantageous genetic mutations in addition to spare copies

Due to the large amount of genetic information, A. kamchatica is better equipped to adapt to new environmental conditions. "With these results, we have demonstrated on a molecular-genetic level that genome duplications can positively affect the adaptability of organisms," says plant scientist Timothy Paape. The multiple gene copies enable the plant to assume advantageous mutations while keeping an original copy of important genes.

Astonishing wide spread

The usefulness of the double genome for A. kamchatica can be seen in its wider distribution - at both low and high altitude - compared with its parental plants. Its habitat ranges from Taiwan, Japan and the Russian Far East to Alaska and the Pacific Northwest region of the United States.

"Knowing the genomic and evolutionary context also helps us understand how genetic diversity allows plants to adapt to changing environmental conditions," says Kentaro Shimizu. The recently published research was supported by the University Research Priority Program Evolution in Action: From Genomes to Ecosystems of the University of Zurich.

Wissenschaftliche Ansprechpartner:

Timothy Paape, PhD
Department of Evolutionary Biology and Environmental Studies
University of Zurich
Phone: +41 44 635 49 86
E-mail: tim.paape@ieu.uzh.ch

Prof. Kentaro K. Shimizu, PhD
Department of Evolutionary Biology and Environmental Studies
University of Zurich
Phone: +41 44 635 67 40
E-mail: kentaro.shimizu@ieu.uzh.ch

Originalpublikation:

Timothy Paape, Roman V. Briskine, Gwyneth Halstead-Nussloch, Heidi E.L. Lischer, Rie Shimizu-Inatsugi, Masaomi Hatakeyama, Kenta Tanaka, Tomoaki Nishiyama, Renat Sabirov, Jun Sese, and Kentaro K. Shimizu. Patterns of polymorphism and selection in the subgenomes of the allopolyploid Arabidopsis kamchatica. Nature Communications. September 25, 2018. DOI: 10.1038/s41467-018-06108-1

Weitere Informationen:

https://www.media.uzh.ch/en.html

Melanie Nyfeler | Universität Zürich

More articles from Life Sciences:

nachricht New therapeutic approach to combat African sleeping sickness
20.02.2019 | Johannes Gutenberg-Universität Mainz

nachricht 'Butterfly-shaped' palladium subnano cluster built in 3-D
20.02.2019 | Institute of Industrial Science, The University of Tokyo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.

The Fraunhofer FEP, a provider of research and development services in the field of organic electronics, has long been involved in the development of...

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

Im Focus: Famous “sandpile model” shown to move like a traveling sand dune

Researchers at IST Austria find new property of important physical model. Results published in PNAS

The so-called Abelian sandpile model has been studied by scientists for more than 30 years to better understand a physical phenomenon called self-organized...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

New therapeutic approach to combat African sleeping sickness

20.02.2019 | Life Sciences

Powering a pacemaker with a patient's heartbeat

20.02.2019 | Medical Engineering

The holy grail of nanowire production

20.02.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>