Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Genetic key to "healthy" tea


Analysis of more than 200 different tea varieties provides the basis for breeding healthy teas

Tea (Camellia sinensis) is one of the world's most popular drinks with a wide range of flavours and health benefits. Researchers from Huazhong Agricultural University of Wuhan (China), Forschungszentrum Jülich, Heinrich Heine University Düsseldorf and the Max Planck Institute of Molecular Plant Physiology Potsdam-Golm have now elucidated the genome of an ancient tea tree and analysed more than 200 different tea varieties.

Freshly picked tea. The Chinese-German research team analysed more than 200 different varieties and identified their gene variants.

Weiwei Wen / Huazhong Agricultural University

The genome now forms the basis for further research into the biosynthesis of useful natural substances. The study was led by the plant researcher Prof. Weiwei Wen from Wuhan.

On the German side, the Jülich genome researcher Prof. Björn Usadel collaborated with the expert for plant metabolic processes Prof. Alisdair Fernie from Potsdam-Golm as part of the international Bioeconomy Initiative of the BMBF.

In 2018, around 273 billion litres of tea were consumed worldwide. The trend is rising and makes tea one of the most popular soft drinks. However, tea is not only used for refreshment, tea has already been used in traditional Chinese medicine.

The research team was concerned with the question of which natural ingredients are responsible for the taste and health-promoting properties.

To this end, they used the genetic characterization of old and wild tea varieties to trace the development of modern tea varieties. By analysing more than 200 different tea varieties from different growing regions, the scientists were able to identify gene variants that are responsible for the biosynthesis of healthy secondary plant compounds, the flavonoids. These include in particular catechins, bitter compounds in plants with high antioxidant potential.

These results could form the basis for improved breeding of healthy tea varieties. The scientists were able to show for the first time that, in contrast to other crops, targeted breeding with regard to secondary plant substances is rarely carried out.

With the high-resolution genome data of old and wild tea varieties, new varieties can now be bred in the future to satisfy the growing international demand for "healthy" tea.

Wissenschaftliche Ansprechpartner:

Prof. Alisdair Fernie
Max-Planck-Institut für Molekulare Pflanzenphysiologie
Telefon: 0331 567 8211

Prof. Dr. Björn Usadel
Institut für Bio- und Geowissenschaften, Bereich Bioinformatik (IGB-4)
Forschungszentrum Jülich und
Institute for Biological Data Science
Heinrich-Heine Universität Düsseldorf
Tel. 02461 61 85801

Dr. Diana Klose
Institut für Bio- und Geowissenschaften, Bereich Bioinformatik (IBG-4)
Forschungszentrum Jülich
Tel. 02461 61 85852
Tel. 02461 61 85801


Weiji Zhang, Youjun Zhang, Haiji Qiu, Yafei Guo, Haoliang Wan, Xiaoliang Zhang, Federico Scossa, Saleh Alseekh, Qinguhua Zhang, Pu Wang, Li Xu, Maximilian H.-W. Schmidt, Xinxin Jia, Daili Li, Anting Zhu, Fei Guo, Wei Chen, Dejiang Ni, Björn Usadel, Alisdair R. Fernie and Weiwei Wen
Genome assembly of wild tea tree DASZ reveals pedigree and selection history of tea varieties
Nature communications, 24 July 2020,

Weitere Informationen:

Dipl. Ing. agr. Ursula Ross-Stitt | Max-Planck-Institut für Molekulare Pflanzenphysiologie

More articles from Life Sciences:

nachricht HIV-1: The undercover agent
29.07.2020 | Berlin Institute of Health (BIH)

nachricht COVID-19 research: Anti-viral strategy with double effect - Possible Achilles’ heel of SARS-CoV-2 virus identified
29.07.2020 | Goethe-Universität Frankfurt am Main

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

Im Focus: NYUAD astrophysicist investigates the possibility of life below the surface of Mars

  • A rover expected to explore below the surface of Mars in 2022 has the potential to provide more insights
  • The findings published in Scientific Reports, Springer Nature suggests the presence of traces of water on Mars, raising the question of the possibility of a life-supporting environment

Although no life has been detected on the Martian surface, a new study from astrophysicist and research scientist at the Center for Space Science at NYU Abu...

Im Focus: Manipulating non-magnetic atoms in a chromium halide enables tuning of magnetic properties

New approach creates synthetic layered magnets with unprecedented level of control over their magnetic properties

The magnetic properties of a chromium halide can be tuned by manipulating the non-magnetic atoms in the material, a team, led by Boston College researchers,...

Im Focus: A new method to significantly increase the range and stability of optical tweezers

Scientists of Tomsk Polytechnic University jointly with a team of the V.E. Zuev Institute of Atmospheric Optics of the Siberian Branch of the Russian Academy of Sciences have discovered a method to increase the operation range of optical traps also known

Optical tweezers are a device which uses a laser beam to move micron-sized objects such as living cells, proteins, and molecules. In 2018, the American...

Im Focus: Princeton scientists discover a topological magnet that exhibits exotic quantum effects

Magnet's novel quantum effects extend to room temperature

An international team led by researchers at Princeton University has uncovered a new class of magnet that exhibits novel quantum effects that extend to room...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

Latest News

Genetic key to "healthy" tea

29.07.2020 | Life Sciences

New research area on soft magnetic materials launched at Fraunhofer IFAM Dresden

29.07.2020 | Materials Sciences

Tailored light inspired by nature

29.07.2020 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>