Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene variation promotes uncontrolled cell division

18.12.2015

Mom’s eyes and dad’s tumor? Cancer is due to genetic defects, some of which can be hereditary. The gene variant rs351855, for example, occurs in one in two cancer patients. A team headed by Axel Ullrich from the Max Planck Institute of Biochemistry in Martinsried identified the gene variant a decade ago. Now, they succeeded for the first time in showing that the variation exposes an otherwise hidden binding site on the FGFR4 receptor. There, growth factor STAT3, which promotes cancer, binds to the exposed site. The STAT3 signaling cascade can be efficiently blocked. This could provide a promising therapeutic approach for many cancer patients. The paper was published in Nature.

A human is a human: we are all 99.9% genetically identical. However, the remaining 0.1% accounts for the unique characteristics of each individual, whether he or she is tall or short, allergic or susceptible to autoimmune diseases. Those three million or so of the 3.2 billion genetic building blocks in our genome may contain the answer to the question of whether we will develop cancer in the course of our lives.


About 30% of the world population harbors the gene variation rs351855-A in their genomes. In the event of cancer, the encoded receptor FGFR4 p.G388R contributes to a faster disease progression.

Vijay K. Ulaganathan, Monika Krause © MPI of Biochemistry

Cancer is a genetic disease, i.e. it is due to defects in the genetic material DNA. Such harmful mutations can be acquired in the course of life, as a result of exposure of skin cells to intense sunlight, for example, or toxins from cigarette smoke in the lungs. However, some defects are passed on as inheritable genetic variants to offspring, who then carry those defects in every cell of their body.

One such cancer-associated germline mutation is called rs351855. It was discovered in patients with breast cancer by a team headed by Axel Ullrich, Leader of the Molecular Biology Research Group, a decade ago. This particular genetic variant can support the growth of malignant tumors in bones, the colon, the prostate, the skin, the lungs and the head and neck, as well as to the growth of soft-tissue sarcomas and non-Hodgkin’s lymphoma.

About half of all cancer patients carry this gene variation. It is associated with a poor prognosis. The germline mutation rs351855 accounts for aggressive and rapidly growing tumors that are resistant to treatment. An effective treatment needs to be tailored to match the mutation and its biological effects.

Subsequent studies have shown that rs351855 results in the replacement of a single protein building unit in a receptor for growth factors. Fibroblast growth factor receptor 4 (FGFR4) is then expressed in the form of the FGFR4 p.Arg388 variant. Scientists around the world are trying to find out why only this particular genetic variant, out of more than 400 known ones of FGFR4, has such a high impact. Moreover, the genetic mutation occurs very frequently, around one-third of the population carry it in the genome. It is not known, whether this variation itself increases the general risk of cancer.

Ullrich and his associates have now demonstrated for the first time that the defect results in a previously unknown biological function in living cells. They showed in an animal model that the defect exposes a normally hidden binding site on the receptor molecule near the inner cell membrane. Growth factor STAT3, which promotes cell division and tumor growth, is then able to dock to the receptor.

Cells do not usually proliferate out of control, because they only divide in response to a signal that they receive from the outside. This molecular message is picked up by receptors such as FGFR4 and is then relayed through the cell membrane into the interior of the cell, thus setting in motion a cascade of molecular interactions with molecules such as STAT3 that culminates in the cell nucleus, where genes are activated that direct the actual process of cell division.

This hierarchical process is often undermined in cancer. The cells divide without an external command. That is the case, for example, when STAT3 is activated by abnormal binding to the defective receptor. Such interaction of STAT3 close to the inner cell membrane was previously unknown and unexpected. “I wasn’t really convinced until various experimental approaches produced matching results,” says Vijay K. Ulaganathan, lead author of the study.

The scientists have also shown that the growth of cells carrying this gene variant can be inhibited by blocking STAT3. “For the first time, there may be very good prospects of an effective treatment option for cancer patients with this respective germline mutation,” says Ullrich. Others may also be affected: Other germline mutations also exist that recruit STAT3 to the inner cell membrane and may also lead to cancer.

The work is an important step towards personalized medicine, which takes into account the individual genetic makeup of cancer patients. “As we have shown here, we need to focus on germline mutations as well,” says Ullrich. “Research should not be limited to environmentally-related genetic defects.” Ullrich is a pioneer in personalized medicine. Among other things, he developed together with colleagues Herceptin, a drug that is tailor-made for treating breast cancer associated with specific mutations.

Original publication:
V. K. Ulaganathan, B. Sperl, U. R. Rapp, Axel Ullrich: Germline variant FGFR4 p.G388R exposes membrane-proximal STAT3 binding site, Nature, December 2015
DOI: 10.1038/nature16449

Contact:
Prof. Dr. Axel Ullrich
Department of Molecular Biology
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
Germany
E-Mail: ullrich@biochem.mpg.de
www.biochem.mpg.de/ullrich

Dr. Vijay K. Ulaganathan
Department of Molecular Biology
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
Germany
E-Mail: ulaganat@biochem.mpg.de

Dr. Christiane Menzfeld
Public Relations
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
Germany
Tel. +49 89 8578-2824
E-Mail: pr@biochem.mpg.de
www.biochem.mpg.de

Weitere Informationen:

http://www.biochem.mpg.de - homepage max planck institute of biochemistry
http://www.biochem.mpg.de/ullrich - homepage Axel Ullrich

Dr. Christiane Menzfeld | Max-Planck-Institut für Biochemie

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>