Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flipping the switch to stop tumor development

22.06.2017

Freiburg researchers show how a protein prevents the uncontrolled expansion of immune cells

The mammalian immune system consists of millions of individual cells that are produced daily from precursor cells in the bone marrow. During their development, immune cells undergo a rapid expansion, which is interrupted by phases of differentiation to more mature lymphocytes.


Expanding B-cell tumors.

Image: Michael Reth


Grafik: Michael Reth

Alternate phases of proliferation and differentiation occur also during the maturation of antibody-producing B cells. Researchers in Prof. Dr. Michael Reth’s laboratory have come one step closer to understand how the proliferation to differentiation switch in B lymphocytes works, thereby providing new insights into the development of the most common types of tumors in children and potential therapies thereof. The team has published its study in the journal Nature Immunology.

Because the switch induces differentiation, it limits the proliferation phase of precursor cells, so-called pre-B cells. If differentiation is blocked, pre-B cells continue to proliferate and this can lead to pre-B cell leukemia. The researchers have shown that the switch factor is a complex with two components: a small adaptor protein called B cell translocation gene 2 (BTG2) and the protein arginine methyl transferase 1 (PRMT1).

“We found that BTG2 is up-regulated upon pre-B cell differentiation and that an induced expression of BTG2 in pre-B cells stops their proliferation,” explains Dr. Elmar Dolezal, the first author of the published paper. How the BTG2/PRMT1 complex stops pre-B cell proliferation was shown by Dr. David Medgyesi: once activated by BTG2, PRMT1 specifically methylates the protein CDK4, thereby preventing its function in the cell cycle and further cell proliferation.

Interestingly, many tumor cells have either deleted the BTG2 gene or have silenced it. For example it is hardly expressed in B-Cell Acute Lymphoblastic Leukemia (B-ALL), the most common type of cancer in children. Using a mouse model, the authors of the study have shown that reintroducing BTG2 in such B-ALL tumor cells prevents further tumor development.

“We have discovered how BTG2 works as a tumor suppressor in pre-B cells and this may help to better understand and possibly develop a better treatment of B-ALL tumors,” summarizes Reth. “It will be important in the future to explore the exact mechanisms for expression and regulation of the BTG2 gene and to find ways in which we can introduce BTG2 in B-cell tumors to patients and thereby block the tumor cells’ proliferation.”

Michael Reth is Professor for Molecular Immunology at the Max Planck Institute for Immunology and Epigenetic (MPI-IE) and at the Faculty for Biology of the University of Freiburg. He is also director of the excellence cluster BIOSS, Centre for Biological Signaling Studies. This research was funded by the Max Planck Gesellschaft (MPG), the German Cancer Foundation and by the Deutsche Forschungsgemeinschaft via the collaborative research project 746, “Functional specificity through the coupling and modification of proteins”. Elmar Dolezal was funded by the Spemann Graduate School of Biology and Medicine at the University of Freiburg. David Medgyesi is one of the project leaders in Michael Reth’s laboratory.

Original publication:
Elmar Dolezal, Simona Infantino, Friedel Drepper, Theresa Börsig, Aparajita Singh, Thomas Wossning, Gina J. Fiala, Susana Minguet, Bettina Warscheid, David M. Tarlinton, Hassan Jumaa, David Medgyesi & Michael Reth (2017): The BTG2-PRMT1 module limits pre-B cell expansion by regulating the CDK4-Cyclin-D3 complex. In: Nature Immunology. doi:10.1038/ni.3774

Contact:
Prof. Dr. Michael Reth
E-Mail: BIOSS Centre for Biological Signalling Studies
University of Freiburg
Tel.: 0761/203-97374
E-Mail: michael.reth@bioss.uni-freiburg.de

Weitere Informationen:

https://www.pr.uni-freiburg.de/pm-en/2017/flipping-the-switch-to-stop-tumor-deve...

Rudolf-Werner Dreier | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Microscope measures muscle weakness
16.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Good preparation is half the digestion
16.11.2018 | Max-Planck-Institut für Stoffwechselforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>