Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Exploiting Epigenetic Variation for Plant Breeding

08.11.2018

Epigenetic changes can bring about new traits without altering the sequence of genes. This may allow plants to respond quicker to changes in their environment. Plant biologists at the University of Zurich have now demonstrated that epigenetic variation is also subject to selection and can be inherited. This could expand the possibilities for crop breeding.

The sequence of genes passed on to daughter cells or offspring isn't the only factor that determines the traits of cells and organisms. Chemical changes in the genetic material that do not alter the underlying DNA sequence also play a role in controlling which genes are active or inactive.


Due to epigenetic variation, the selected Arabidopsis plants flower later – recognizable by the shorter flower stems compared to the original population.

UZH

Methylation is one such epigenetic mark, which involves the addition of small chemical groups to specific bases in the DNA. The role of the inheritance of epigenetic variation in humans and mammals is controversial; however, there are several examples of epigenetic inheritance in plants.

Adaptability thanks to epigenetics

Plant biologists at the University of Zurich have now demonstrated that naturally occurring epigenetic variation in mouse-ear cress (Arabidopsis thaliana) is subject to selection. The team of Ueli Grossniklaus at the Department of Plant and Microbial Biology also showed that newly selected traits - which are important for seed dispersal - are passed on for at least two to three generations even without selection.

"Epigenetic variation thus contributes to the ability of plants to quickly adapt to changes in the environment without sequence changes in the genome," explains Grossniklaus.

Selection of plants with effective seed dispersal

In their experiment, the plant biologists simulated a rapidly changing environment. They selected Arabidopsis populations over five generations according to how far they dispersed their seeds. Only seeds that spread to locations a certain distance from the mother plant were used for the subsequent generation.

The researchers then took the seeds of three independent populations featuring effective seed dispersal and grew them together with seeds of the original, non-selected population - but this time in an environment without selection pressure. The plant populations were examined in depth after a further two generations.

Analysis of genetic activity, genome, and epigenome

"We were able to show that in the selected plants, two traits that are important for seed dispersal were different compared to the original population. The plants flowered later and had a higher number of branches," says Grossniklaus.

These changes could not be traced back to mutations in the genome of the plants. However, the researchers found significant differences in the epigenome: The state of methylation was altered at about 50,000 bases in the DNA. Differences were also found in the activity of genes that controlled flowering, for example.

New opportunities for crop breeding

Even under normal environmental conditions without selection, the new traits were maintained for at least two to three generations. "Like genetic variation, epigenetic variation is subject to selection and contributes to the diversity of plant traits.

Since the genetic basis of crops is often very limited, epigenetics could be used to expand the material for plant breeding," emphasizes Grossniklaus. Climate change is likely to alter the environmental conditions in many of the world's regions within a short period of time. Plant species that can quickly adapt to changes are thus becoming increasingly important.

Wissenschaftliche Ansprechpartner:

Contact:
Prof. Ueli Grossniklaus, PhD
Department of Plant and Microbial Biology
University of Zurich
Phone: +41 44 634 82 40
E-mail: grossnik@botinst.uzh.ch

Prof. Bernhard Schmid, PhD
Department of Geography
University of Zurich
Phone: +41 44 635 52 05
E-mail: bernhard.schmid@ieu.uzh.ch

Originalpublikation:

Literature:
Marc W. Schmid, Christian Heichinger, Diana Coman Schmid, Daniela Guthörl, Valeria Gagliardini, Rémy Bruggmann, Sirisha Aluri, Catharine Aquino, Bernhard Schmid, Lindsay A. Turnbull, and Ueli Grossniklaus. Contribution of epigenetic variation to adaptation in Arabidopsis. Nature Communications. October 25, 2018. DOI: 10.1038/s41467-018-06932-5.

Weitere Informationen:

https://www.media.uzh.ch/de/medienmitteilungen/2018/Epigenetische-Variation.html

Melanie Nyfeler | Universität Zürich

Further reports about: Arabidopsis DNA environmental conditions epigenetic epigenome genes

More articles from Life Sciences:

nachricht DNA is held together by hydrophobic forces
23.09.2019 | Chalmers University of Technology

nachricht New method for the measurement of nano-structured light fields
23.09.2019 | Westfälische Wilhelms-Universität Münster

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 'Nanochains' could increase battery capacity, cut charging time

How long the battery of your phone or computer lasts depends on how many lithium ions can be stored in the battery's negative electrode material. If the battery runs out of these ions, it can't generate an electrical current to run a device and ultimately fails.

Materials with a higher lithium ion storage capacity are either too heavy or the wrong shape to replace graphite, the electrode material currently used in...

Im Focus: Stevens team closes in on 'holy grail' of room temperature quantum computing chips

Photons interact on chip-based system with unprecedented efficiency

To process information, photons must interact. However, these tiny packets of light want nothing to do with each other, each passing by without altering the...

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Im Focus: Modular OLED light strips

At the International Symposium on Automotive Lighting 2019 (ISAL) in Darmstadt from September 23 to 25, 2019, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, a provider of research and development services in the field of organic electronics, will present OLED light strips of any length with additional functionalities for the first time at booth no. 37.

Almost everyone is familiar with light strips for interior design. LED strips are available by the metre in DIY stores around the corner and are just as often...

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

 
Latest News

Clarification of a new synthesis mechanism of semiconductor atomic sheet

23.09.2019 | Materials Sciences

SUTD researchers revolutionize 3D printed products with data-driven design method

23.09.2019 | Information Technology

Bioplastics from Waste Fats

23.09.2019 | Ecology, The Environment and Conservation

VideoLinks
Science & Research
Overview of more VideoLinks >>>