Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Exploiting Epigenetic Variation for Plant Breeding

08.11.2018

Epigenetic changes can bring about new traits without altering the sequence of genes. This may allow plants to respond quicker to changes in their environment. Plant biologists at the University of Zurich have now demonstrated that epigenetic variation is also subject to selection and can be inherited. This could expand the possibilities for crop breeding.

The sequence of genes passed on to daughter cells or offspring isn't the only factor that determines the traits of cells and organisms. Chemical changes in the genetic material that do not alter the underlying DNA sequence also play a role in controlling which genes are active or inactive.


Due to epigenetic variation, the selected Arabidopsis plants flower later – recognizable by the shorter flower stems compared to the original population.

UZH

Methylation is one such epigenetic mark, which involves the addition of small chemical groups to specific bases in the DNA. The role of the inheritance of epigenetic variation in humans and mammals is controversial; however, there are several examples of epigenetic inheritance in plants.

Adaptability thanks to epigenetics

Plant biologists at the University of Zurich have now demonstrated that naturally occurring epigenetic variation in mouse-ear cress (Arabidopsis thaliana) is subject to selection. The team of Ueli Grossniklaus at the Department of Plant and Microbial Biology also showed that newly selected traits - which are important for seed dispersal - are passed on for at least two to three generations even without selection.

"Epigenetic variation thus contributes to the ability of plants to quickly adapt to changes in the environment without sequence changes in the genome," explains Grossniklaus.

Selection of plants with effective seed dispersal

In their experiment, the plant biologists simulated a rapidly changing environment. They selected Arabidopsis populations over five generations according to how far they dispersed their seeds. Only seeds that spread to locations a certain distance from the mother plant were used for the subsequent generation.

The researchers then took the seeds of three independent populations featuring effective seed dispersal and grew them together with seeds of the original, non-selected population - but this time in an environment without selection pressure. The plant populations were examined in depth after a further two generations.

Analysis of genetic activity, genome, and epigenome

"We were able to show that in the selected plants, two traits that are important for seed dispersal were different compared to the original population. The plants flowered later and had a higher number of branches," says Grossniklaus.

These changes could not be traced back to mutations in the genome of the plants. However, the researchers found significant differences in the epigenome: The state of methylation was altered at about 50,000 bases in the DNA. Differences were also found in the activity of genes that controlled flowering, for example.

New opportunities for crop breeding

Even under normal environmental conditions without selection, the new traits were maintained for at least two to three generations. "Like genetic variation, epigenetic variation is subject to selection and contributes to the diversity of plant traits.

Since the genetic basis of crops is often very limited, epigenetics could be used to expand the material for plant breeding," emphasizes Grossniklaus. Climate change is likely to alter the environmental conditions in many of the world's regions within a short period of time. Plant species that can quickly adapt to changes are thus becoming increasingly important.

Wissenschaftliche Ansprechpartner:

Contact:
Prof. Ueli Grossniklaus, PhD
Department of Plant and Microbial Biology
University of Zurich
Phone: +41 44 634 82 40
E-mail: grossnik@botinst.uzh.ch

Prof. Bernhard Schmid, PhD
Department of Geography
University of Zurich
Phone: +41 44 635 52 05
E-mail: bernhard.schmid@ieu.uzh.ch

Originalpublikation:

Literature:
Marc W. Schmid, Christian Heichinger, Diana Coman Schmid, Daniela Guthörl, Valeria Gagliardini, Rémy Bruggmann, Sirisha Aluri, Catharine Aquino, Bernhard Schmid, Lindsay A. Turnbull, and Ueli Grossniklaus. Contribution of epigenetic variation to adaptation in Arabidopsis. Nature Communications. October 25, 2018. DOI: 10.1038/s41467-018-06932-5.

Weitere Informationen:

https://www.media.uzh.ch/de/medienmitteilungen/2018/Epigenetische-Variation.html

Melanie Nyfeler | Universität Zürich

Further reports about: Arabidopsis DNA environmental conditions epigenetic epigenome genes

More articles from Life Sciences:

nachricht New eDNA technology used to quickly assess coral reefs
18.04.2019 | University of Hawaii at Manoa

nachricht New automated biological-sample analysis systems to accelerate disease detection
18.04.2019 | Polytechnique Montréal

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>