Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Disrupting communication in infectious bacteria

07.11.2018

Chemists in Konstanz inhibit the biosynthesis of a bacterial signal and, as a result, block the infectious properties of Pseudomonas aeruginosa, the most common germ found in health care facilities.

The World Health Organization (WHO) considers Pseudomonas aeruginosa a germ requiring urgent action to prevent and control its spread. The bacteria can cause a variety of diseases from chronic lung infections to sepsis.


Schematic representation of Pseudomonas aeruginosa

AG Böttcher

As a result of its increasing resistance to many antibiotics, such infections are often life-threatening. Instead of trying to develop a new antibiotic to combat Pseudomonas aeruginosa, chemist Dr Thomas Böttcher and his team in Konstanz have focused their research efforts on inhibiting virulence factors in the germ.

These include toxins and other agents which benefit the infection process. To this aim, the research team developed a technique which is able to measure the inhibition of enzymes directly in a living cell. The method is described in the current issue of the renowned Journal of the American Chemical Society (JACS).

Thomas Böttcher and Konstanz-based doctoral researcher Michaela Prothiwa concentrated their efforts on a specific metabolic pathway in the bacteria which is responsible for the biosynthesis of signals called quinolones. Pseudomonas aeruginosa uses these signals to coordinate the production of virulence factors.

Quinolones hereby act as quorum sensing signals: The bacteria use these molecules to quantify their cell number or population density, much like the method used to determine a majority vote. If the quinolones signal that their number and density is large enough, then the bacteria begin to produce virulence factors. These are responsible for the infectious properties of the bacteria.

The aim of the Konstanz research team is to shut down this quinolone-based communication. The enzyme PqsD plays a central role in the biosynthesis of quinolones. The researchers were able to develop a molecule that can be used to inhibit the enzyme and thus to prevent the bacteria from producing quinolones that help the bacteria to determine their population density.

Inhibition of the signal renders them unable to produce toxins and virulence factors. “We are disrupting the communication between the microorganisms”, says Thomas Böttcher.

For this purpose, his team of chemists at the University of Konstanz developed a new method of searching for enzyme inhibitors. Until now, enzyme inhibitors had typically been developed in cell-free systems and had often proved ineffective in living cells. A novel strategy using chemical probes now makes it possible to measure the inhibition of an enzyme directly in a living cell.

Libraries of chemical compounds can now be tested to discover inhibitors for specific metabolic pathways in bacteria. The strategy is not limited to the enzyme PqsD only. In the future, it will also be used for the specific development of inhibitors that target other bacterial metabolic pathways.

Another publication from Thomas Böttcher’s research team appears in Chemistry – A European Journal and focuses on virulence factors and a drug considered an “essential medicine” by the WHO. This research aims to understand why some enzymes in bacteria produce small siderophores made of either two or three building blocks.

The metabolites produced by cyclization of two building blocks include virulence factors for diseases affecting fish and insects, while a larger compound consisting of three building blocks is in one of the most important drugs used worldwide.

This drug is utilized during blood transfusions or to treat diseases caused by excess iron in the bloodstream. Along with doctoral researcher Sina Rütschlin, Thomas Böttcher developed a new model to explain how these siderophores are produced with either two or three building blocks. The future goal is to be able to customize enzymes optimized for the production of these chemical agents.

Key facts:
• Original publication:
Michaela Prothiwa, Felix Englmaier, and Thomas Böttcher: Competitive Live-Cell Profiling Strategy for Discovering Inhibitors of the Quinolone Biosynthesis of Pseudomonas aeruginosa. J. Am. Chem. Soc., 2018, 140 (43).
https://pubs.acs.org/doi/abs/10.1021/jacs.8b07629
• Inhibiting the infectious properties of Pseudomonas aeruginosa, one of the most commonly found germs in health care facilities worldwide, by disrupting the biosynthesis of a bacterial signal
• A new technique for measuring enzyme inhibition in living cells provides the basis for developing new customized inhibitors
• Funding provided by the Emmy Noether Programme and the Carl-Zeiss-Stiftung (Carl Zeiss Foundation)
Original publication:
Sina Rütschlin and Thomas Böttcher: Dissecting the mechanism of oligomerization and macrocyclization reactions of NRPS independent siderophore synthetases. Chem. Eur. J., 2018, 24.
https://doi.org/10.1002/chem.201803494
• Research on why some enzymes in a bacteria produce siderophores made of two building blocks and other enzymes produce siderophores made of three building blocks.
• The metabolites produced by cyclization of two building blocks include virulence factors for diseases affecting fish and insects, while structures consisting of three building blocks are in one of the most important drugs used worldwide.
• Funding provided by the Emmy Noether Programme and the Konstanz Research School Chemical Biology (KoRS-CB).

Note to editors:
You can download a photo here:

https://cms.uni-konstanz.de/fileadmin/pi/fileserver/2018/Bilder/Strategische_Kom...
Caption: Schematic representation of Pseudomonas aeruginosa
Copyright: AG Böttcher

Contact
University of Konstanz
Communications and Marketing
Phone: + 49 7531 88-3603
E-Mail: kum@uni-konstanz.de

Originalpublikation:

Michaela Prothiwa, Felix Englmaier, and Thomas Böttcher: Competitive Live-Cell Profiling Strategy for Discovering Inhibitors of the Quinolone Biosynthesis of Pseudomonas aeruginosa. J. Am. Chem. Soc., 2018, 140 (43).
https://pubs.acs.org/doi/abs/10.1021/jacs.8b07629

Julia Wandt | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-konstanz.de

More articles from Life Sciences:

nachricht Self-organizing molecules: Nanorings with two sides
24.07.2019 | Universität Duisburg-Essen

nachricht Genome research shows that the body controls the integrity of heritable genomes
24.07.2019 | Universität zu Köln

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: MOF@SAW: Nanoquakes and molecular sponges for weighing and separating tiny masses

Augsburg chemists and physicists report how they have succeeded in the extremely difficult separation of hydrogen and deuterium in a gas mixture.

Thanks to the Surface Acoustic Wave (SAW) technology developed here and already widely used, the University of Augsburg is internationally recognized as the...

Im Focus: Better thermal conductivity by adjusting the arrangement of atoms

Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone. The scientists will publish the results shortly in the journal Nano Letters.

In the electronics and computer industry, components are becoming ever smaller and more powerful. However, there are problems with the heat generation. It is...

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Hidden dynamics detected in neuronal networks

23.07.2019 | Life Sciences

Towards a light driven molecular assembler

23.07.2019 | Life Sciences

A torque on conventional magnetic wisdom

23.07.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>