Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery paves the way for a new generation of chemotherapies

10.09.2014

In an article published in the journal Chemistry & Biology, researchers describe a new mechanism that inhibits the activity of proteasomes, protein complexes that are a target for cancer therapy

A new mechanism to inhibit proteasomes, protein complexes that are a target for cancer therapy, is the topic of an article published in the journal Chemistry & Biology. The first author of the study is Daniela Trivella, researcher at the Brazilian Biosciences National Laboratory at the Brazilian Center for Research in Energy and Materials (LNBio/CNPEM).

The findings of the study, conducted with FAPESP support in partnership with researchers from the University of California in San Diego, United States, and at the Technische Universität München, in Germany, are paving the way for the development of a new generation of chemotherapy drugs that are more effective and less toxic.

"We have already developed a series of molecules based on the newly identified mechanism. Now we plan to synthesize them in partnership with CNPEM researcher Marjorie Bruder and test their potential. The goal is to optimize the proteasome inhibition effect, make the compound even more selective of tumor cells and eliminate the resistance problems found with drugs that are currently available on the market," Trivella said.

A member of the category of enzymes known as proteases, the proteasome is a protein complex responsible for several essential functions inside cells, such as eliminating harmful or non-functioning proteins and regulating the processes of apoptosis (programmed cell death), cell division and proliferation.

In 2012, the drug carfilzomib, inspired by a natural molecule called epoxomicin, was approved. Also in 2012, U.S. and Brazilian researchers isolated a natural molecule in cyanobacteria from the Caribbean called carmaphycin, whose reactive group (the portion of the molecule that interacts with the proteasome) is the same as that of carfilzomib. The molecule is known as an epoxyketone.

"Epoxyketones are very potent selective inhibitors of the proteasome because they interact with this enzyme in two stages: the first reversible and the second irreversible," Trivella explained.

To optimize its effect and find new reactive groups, researchers from the Scripps Institution of Oceanography at the University of California in San Diego developed a series of synthetic analogs with slight structural modifications.

Trivella tested these compounds during an internship in California in her post-doctoral research when she was still associated with the Chemistry Institute at the University of Campinas (Unicamp).

One of the molecules tested had an enone as a reactive group and had characteristics of carmaphycin and another natural molecule named syringolin, isolated from plant pathogens.

By investigating the reaction mechanisms of the new molecule, named carmaphycin-syringolin enone, the researcher verified that unlike syringolin, and thus like the epoxyketone, the enone interacts with the proteasome in two stages, with the second stage being irreversible.

Additionally, Trivella had observed that in the case of the enone, the second reaction occurs more slowly, increasing the duration of the reversible phase of carmaphycin-syringolin enone inhibition.

"Because the irreversible inactivation of the proteasome has toxic effects, the best window of reversibility observed for the carmaphycin-syringolin enone will potentially reduce the toxicity of this new class of proteasome inhibitors," Trivella said. "The compound would therefore present a balance between selectivity and potency."

Toxicity tests are still underway. In parallel, studies have been conducted with the help of crystallography techniques to discover exactly how the interaction between the enzyme target and the carmaphycin- syringolin enone target occurs.

"We discovered that a chemical reaction called hydroamination occurs, which had never before seen under physiological conditions. This type of reaction is frequently used by synthetic chemists in preparing substances, but normally it requires very specific temperature and pH conditions and the use of catalysts to occur. It has never been reported as a mechanism of enzyme inhibition," Trivella said.

Inspired by this new mechanism for proteasome inhibition, the LNBio group plans to synthesize and test a new series of carmaphycin-syringolin enone analogs to determine their effects on the therapeutic window (preferential death of tumor cells in relation to healthy cells) and assess whether they are also capable of reacting with proteasomes that are resistant to traditional inhibitors.

Another of Trivella's goals is to look for natural compounds in Brazilian biodiversity that could serve as inspiration for the design of other categories of proteasome inhibitors.

Samuel Antenor | Eurek Alert!
Further information:
http://www.fapesp.br/

Further reports about: chemotherapies compounds death enzyme irreversible mechanism proteasome reactive

More articles from Life Sciences:

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

nachricht Pollen taxi for bacteria
18.07.2018 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>