Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery paves the way for a new generation of chemotherapies

10.09.2014

In an article published in the journal Chemistry & Biology, researchers describe a new mechanism that inhibits the activity of proteasomes, protein complexes that are a target for cancer therapy

A new mechanism to inhibit proteasomes, protein complexes that are a target for cancer therapy, is the topic of an article published in the journal Chemistry & Biology. The first author of the study is Daniela Trivella, researcher at the Brazilian Biosciences National Laboratory at the Brazilian Center for Research in Energy and Materials (LNBio/CNPEM).

The findings of the study, conducted with FAPESP support in partnership with researchers from the University of California in San Diego, United States, and at the Technische Universität München, in Germany, are paving the way for the development of a new generation of chemotherapy drugs that are more effective and less toxic.

"We have already developed a series of molecules based on the newly identified mechanism. Now we plan to synthesize them in partnership with CNPEM researcher Marjorie Bruder and test their potential. The goal is to optimize the proteasome inhibition effect, make the compound even more selective of tumor cells and eliminate the resistance problems found with drugs that are currently available on the market," Trivella said.

A member of the category of enzymes known as proteases, the proteasome is a protein complex responsible for several essential functions inside cells, such as eliminating harmful or non-functioning proteins and regulating the processes of apoptosis (programmed cell death), cell division and proliferation.

In 2012, the drug carfilzomib, inspired by a natural molecule called epoxomicin, was approved. Also in 2012, U.S. and Brazilian researchers isolated a natural molecule in cyanobacteria from the Caribbean called carmaphycin, whose reactive group (the portion of the molecule that interacts with the proteasome) is the same as that of carfilzomib. The molecule is known as an epoxyketone.

"Epoxyketones are very potent selective inhibitors of the proteasome because they interact with this enzyme in two stages: the first reversible and the second irreversible," Trivella explained.

To optimize its effect and find new reactive groups, researchers from the Scripps Institution of Oceanography at the University of California in San Diego developed a series of synthetic analogs with slight structural modifications.

Trivella tested these compounds during an internship in California in her post-doctoral research when she was still associated with the Chemistry Institute at the University of Campinas (Unicamp).

One of the molecules tested had an enone as a reactive group and had characteristics of carmaphycin and another natural molecule named syringolin, isolated from plant pathogens.

By investigating the reaction mechanisms of the new molecule, named carmaphycin-syringolin enone, the researcher verified that unlike syringolin, and thus like the epoxyketone, the enone interacts with the proteasome in two stages, with the second stage being irreversible.

Additionally, Trivella had observed that in the case of the enone, the second reaction occurs more slowly, increasing the duration of the reversible phase of carmaphycin-syringolin enone inhibition.

"Because the irreversible inactivation of the proteasome has toxic effects, the best window of reversibility observed for the carmaphycin-syringolin enone will potentially reduce the toxicity of this new class of proteasome inhibitors," Trivella said. "The compound would therefore present a balance between selectivity and potency."

Toxicity tests are still underway. In parallel, studies have been conducted with the help of crystallography techniques to discover exactly how the interaction between the enzyme target and the carmaphycin- syringolin enone target occurs.

"We discovered that a chemical reaction called hydroamination occurs, which had never before seen under physiological conditions. This type of reaction is frequently used by synthetic chemists in preparing substances, but normally it requires very specific temperature and pH conditions and the use of catalysts to occur. It has never been reported as a mechanism of enzyme inhibition," Trivella said.

Inspired by this new mechanism for proteasome inhibition, the LNBio group plans to synthesize and test a new series of carmaphycin-syringolin enone analogs to determine their effects on the therapeutic window (preferential death of tumor cells in relation to healthy cells) and assess whether they are also capable of reacting with proteasomes that are resistant to traditional inhibitors.

Another of Trivella's goals is to look for natural compounds in Brazilian biodiversity that could serve as inspiration for the design of other categories of proteasome inhibitors.

Samuel Antenor | Eurek Alert!
Further information:
http://www.fapesp.br/

Further reports about: chemotherapies compounds death enzyme irreversible mechanism proteasome reactive

More articles from Life Sciences:

nachricht Nanotubes built from protein crystals: Breakthrough in biomolecular engineering
15.11.2018 | Tokyo Institute of Technology

nachricht Insect Antibiotic Provides New Way to Eliminate Bacteria
15.11.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Massive impact crater from a kilometer-wide iron meteorite discovered in Greenland

15.11.2018 | Earth Sciences

When electric fields make spins swirl

15.11.2018 | Physics and Astronomy

Discovery of a cool super-Earth

15.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>