Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Collaboration between Birmingham and Bonn yields new insights into associative memory

03.04.2019

When looking at a picture of a sunny day at the beach, we can almost smell the scent of sun screen. Our brain often completes memories and automatically brings back to mind the different elements of the original experience. A new collaborative study between the Universities of Birmingham and Bonn now reveals the underlying mechanisms of this auto-complete function. It is now published in the journal Nature Communications.

The researchers presented participants with a number of different scene images. Importantly, they paired each scene image with one of two different objects, such as a raspberry or a scorpion.


Participants first saw images of scenes together with one of two objects. Later they only saw the scene images and were asked to remember which object was associated with the particular scene.

© Cognitive and Clinical Neurophysiology Group/Uni Bonn

Participants were given 3 seconds to memorise a given scene-object combination. After a short break they were presented with the scene images again, but now had to reconstruct the associated object image from memory.

„At the same time, we examined participants‘ brain activation“, explains Prof. Florian Mormann, who heads the Cognitive and Clinical Neurophysiology group at the University of Bonn Medical Centre. „We focused on two brain regions – the hippocampus and the neighbouring entorhinal cortex.“

The hippocampus is known to play a role in associative memory, but how exactly it does so has remained poorly understood.

The researchers made an exciting discovery: During memory recall, neurons in the hippocampus began to fire strongly. This was also the case during a control condition in which participants only had to remember scene images without the objects.

Importantly, however, hippocampal ativity lasted much longer when participants also had to remember the associated object (the raspberry or scorpion image). Additionally, neurons in the entorhinal cortex began to fire in parallel to the hippocampus.

„The pattern of activation in the entorhinal cortex during successful recall strongly resembled the pattern of activation during the initial learning of the objects“, explains Dr. Bernhard Staresina from the University of Birmingham.

Indeed, the similarity between recall and learning was so strong that a computer algorithm was able to tell whether the participant remembered the raspberry or the scorpion. „We call this process reinstatement“, Staresina says: „The act of remembering put neurons in a state that strongly resembles their activation during initial learning.“

The researchers think that such reinstatement is driven by neurons in the hippocampus. Like a librarian, hippocampal neurons might provide pointers telling the rest of the brain where particular memories (such as the raspberry and the scorion) are stored.

Looking into the brain of Epilepsy patients

The brain recordings were conducted at the University Clinic of Epileptology in Bonn – one of Europe’s biggest epilepsy centres. The clinic specialises on patients who suffer from severe forms of medial temporal lobe epilepsy. The goal is to surgically remove those parts of the brain that cause the epileptic seizures.

In order to localise the origin of the seizures, some patients are implanted with electrodes. These electrodes are able to record brain activation. Researchers can use this rare opportunity to closely monitor the brain while it remembers.

This is also what the current study did: The 16 participants were all epilepsy patients who had small electrodes implanted in their medial temporal lobe. „With these electrodes we were able to record the neurons‘ response to visual stimuli“, Prof. Mormann explains. These methods allows fascinating insights into the mechanisms of our memory system. They might also be used to better understand the causes for memory deficits.

Wissenschaftliche Ansprechpartner:

Dr. Bernhard Staresina
School of Psychology
University of Birmingham
Tel.: +44 (0)121 414 8690
E-Mail: b.staresina@bham.ac.uk

Prof. Florian Mormann, MD, PhD
Dept. of Epileptology
University of Bonn
Tel.: +49 228 287 15738
E-Mail: florian.mormann@ukbonn.de

Originalpublikation:

Bernhard P. Staresina, Thomas P. Reber, Johannes Niediek, Jan Boström, Christian E. Elger und Florian Mormann: Recollection in the human hippocampal-entorhinal cell circuitry; Nature Communications; dx.doi.org/10.1038/s41467-019-09558-3

Dr. Andreas Archut | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-bonn.de/

More articles from Life Sciences:

nachricht Ceramic technologies for highly efficient power-to-X processes
10.10.2019 | Fraunhofer-Institut für Keramische Technologien und Systeme IKTS

nachricht Growing and moving
10.10.2019 | University of Freiburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

Im Focus: How Do the Strongest Magnets in the Universe Form?

How do some neutron stars become the strongest magnets in the Universe? A German-British team of astrophysicists has found a possible answer to the question of how these so-called magnetars form. Researchers from Heidelberg, Garching, and Oxford used large computer simulations to demonstrate how the merger of two stars creates strong magnetic fields. If such stars explode in supernovae, magnetars could result.

How Do the Strongest Magnets in the Universe Form?

Im Focus: Liquifying a rocky exoplanet

A hot, molten Earth would be around 5% larger than its solid counterpart. This is the result of a study led by researchers at the University of Bern. The difference between molten and solid rocky planets is important for the search of Earth-like worlds beyond our Solar System and the understanding of Earth itself.

Rocky exoplanets that are around Earth-size are comparatively small, which makes them incredibly difficult to detect and characterise using telescopes. What...

Im Focus: Axion particle spotted in solid-state crystal

Scientists at the Max Planck Institute for Chemical Physics of Solids in Dresden, Princeton University, the University of Illinois at Urbana-Champaign, and the University of the Chinese Academy of Sciences have spotted a famously elusive particle: The axion – first predicted 42 years ago as an elementary particle in extensions of the standard model of particle physics.

The team found signatures of axion particles composed of Weyl-type electrons (Weyl fermions) in the correlated Weyl semimetal (TaSe₄)₂I. At room temperature,...

Im Focus: A cosmic pretzel

Twin baby stars grow amongst a twisting network of gas and dust

The two baby stars were found in the [BHB2007] 11 system - the youngest member of a small stellar cluster in the Barnard 59 dark nebula, which is part of the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Electrochemistry to benefit photonics: Nanotubes can control laser pulses

11.10.2019 | Physics and Astronomy

Biologically inspired skin improves robots' sensory abilities (Video)

11.10.2019 | Power and Electrical Engineering

New electrolyte stops rapid performance decline of next-generation lithium battery

11.10.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>