Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemical juggling with three particles

24.05.2019

Chemists from the University of Bonn and their US colleagues at Columbia University in New York have discovered a novel mechanism in catalysis. It allows the synthesis of certain alcohols more cheaply and environmentally friendly than before. The reaction follows a previously unknown pattern in which hydrogen is split into three components in a time-coordinated manner. More than five years passed between the idea and its practical realization. The results are published in the prestigious journal Science.

Alcohols are common chemical compounds which, in addition to carbon and hydrogen, contain at least one OH group. They serve as starting materials for a whole series of chemical syntheses and are often produced directly from olefins by addition of water (chemical formula: H2O).


Prof. Dr. Andreas Gansäuer and Anastasia Panfilova during epoxy hydrogenation at the Kekulé Institute of Organic Chemistry and Biochemistry at the University of Bonn.

© Photo: Volker Lannert/Uni Bonn

Olefins are hydrocarbons with a double bond available from oil. The water molecule serves as a “donor” of the OH-group characteristic of alcohols.

This synthesis is simple and efficient, but it has a decisive disadvantage: It can only be used to produce certain alcohols, the so-called “Markovnikov alcohols”.

The OH group cannot simply be attached to any position of the olefin – one of two positions is excluded. “We have now found a new catalytic method that can produce exactly these ‘impossible’ alcohols,” explains Prof. Dr. Andreas Gansäuer.

Gansäuer works at the Kekulé Institute of Organic Chemistry and Biochemistry at the University of Bonn. The idea for the new synthesis emerged in 2013 in a collaboration with the group of Prof. Dr. Jack Norton of Columbia University in New York.

However, it took almost five years until the synthesis of the so-called “anti-Markovnikov alcohol” using the new catalytic system worked well enough to be published.

Acceleration and slowing down by the catalysts’ ligands

The fact that the two groups succeeded in making it into the renowned journal ‘Science’ is due to the unusual reaction mechanism. Epoxides, common and valuable intermediate products of the chemical industry, serve as starting materials. Epoxides can be produced by adding an oxygen atom (chemical symbol: O) to olefins. If they are allowed to react with hydrogen molecules (H2), the oxygen becomes an OH group. Normally, with this approach only Markovnikov alcohols are produced.

“In our reaction, however, we successively transfer the hydrogen in three parts,” explains Gansäuer. “First a negatively charged electron, then a neutral hydrogen atom and finally a positively charged hydrogen ion, a proton. We use two catalysts, one of which contains titanium and the other chromium. “This allows us to convert epoxides into anti-Markovnikov alcohols.”

The timing of the entire process must be strictly coordinated - like in juggling, where each ball has to maintain a specified flight duration. To achieve this, the chemists had to synchronize the speed of three catalytic reactions. To this end, they attached the ‘right’ ligands, molecules that control the metals’ reactivity, to the titanium and chromium atoms.

Until now, anti-Markovnikov alcohols have been produced through a so-called hydroboration followed by an oxidation. However, this reaction is relatively complex and not particularly sustainable. The new mechanism, on the other hand, does not produce any by-products and is thus practically waste-free. “Titanium and chromium are also very common metals, unlike many other noble metals that are often used in catalysis,” Gansäuer emphasizes.

In 2013, Norton and Gansäuer submitted their idea to a call for proposals on sustainable catalysis by the International Union of Pure and Applied Chemistry (IUPAC), winning first place. The project was largely financed with the grant money. “But the good cooperation within my institute has certainly also contributed to the success,” emphasizes Gansäuer. “For instance, I had access not only to the institute's resources, but also to equipment of the other groups from Bonn.”

Wissenschaftliche Ansprechpartner:

Prof. Dr. Andreas Gansäuer
Kekulé Institute of Organic Chemistry and Biochemistry
University of Bonn
Tel. +49(0)228/732800
E-mail: andreas.gansaeuer@uni-bonn.de

Originalpublikation:

Chengbo Yao, Tobias Dahmen, Andreas Gansäuer, Jack Norton: Anti-Markovnikov alcohols via epoxide hydrogenation through cooperative catalysis. Science, DOI: 10.1126/science.aaw3913

Johannes Seiler | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-bonn.de/

More articles from Life Sciences:

nachricht Stress testing 'coral in a box'
09.07.2020 | University of Konstanz

nachricht Study reveals how bacteria build essential carbon-fixing machinery
09.07.2020 | University of Liverpool

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

The spin state story: Observation of the quantum spin liquid state in novel material

09.07.2020 | Physics and Astronomy

New method for simulating yarn-cloth patterns to be unveiled at ACM SIGGRAPH

09.07.2020 | Information Technology

Stress testing 'coral in a box'

09.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>