Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ceramic technologies for highly efficient power-to-X processes

10.10.2019

The speedy reduction of worldwide CO2 emissions is one of the most pressing and challenging tasks of our time. Alongside the strategy of avoiding CO2 emissions altogether, there are a number of technologies which transform unavoidable CO2 into valuable products. But these so-called power-to-X processes are currently still inefficient and expensive. Scientists at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden have developed reactors based on ceramics, which use CO2 and water vapor to produce raw materials for the chemical industry in a much more efficient and climate-neutral way.

As one of the world’s largest economies, Germany ranks sixth worldwide in terms of CO2 emissions. In the industrial sector alone, 188 million tons of CO2 are produced each year.


Scientists at Fraunhofer IKTS develop ceramic technology concepts for highly efficient power-to-X processes.

© Fraunhofer IKTS

At the same time, Germany must significantly increase the share of renewable energies in its electricity supply in order to achieve its climate targets. However, these renewable energies fluctuate over time and are not unlimited. It is therefore important to use them intelligently and above all efficiently.

Various strategies are currently being pursued for the use of unavoidable CO2 emissions, for example to produce chemical raw materials (X). For this process to be as climate-neutral as possible, the power required for it must be obtained from renewable energies – in this way climate-damaging CO2 is used to manufacture climate-neutral products.

Current power-to-X processes still too expensive

However, such power-to-X processes are still too inefficient because they consist of many complex individual processes. Scientists at Fraunhofer IKTS have now succeeded in developing a pilot plant – consisting of ceramic-based reactors – in which CO2 can be converted into climate-neutral chemical raw materials. In these reactors, the individual processes are smartly coupled, and material and energy flows intensified. This increases efficiency compared to previous power-to-X processes.

Coupling co-electrolysis with Fischer-Tropsch synthesis

Unavoidable CO2 emissions occur in large quantities for example in the cement and lime industries. Fraunhofer IKTS uses a wide range of ceramic components and technologies to harness this CO2. For example, ceramic filter cartridges remove dust from exhaust fumes. The CO2 can only be filtered out by ceramic membranes after such coarse cleaning.

The CO2 thus obtained is converted into carbon monoxide at over 750 °C in a newly developed ceramic high-temperature electrolysis reactor. At the same time – and this is remarkable – hydrogen is produced from steam in the same reactor, hence the name co-electrolysis. Put together, carbon monoxide and hydrogen form synthesis gas.

The reactors used are electrolysis stacks (SOEC). They were developed at IKTS and have already successfully demonstrated a long-term stability of more than 4000 hours. Compared to established alkaline or PEM electrolysis, high-temperature electrolysis requires considerably less electrical energy and also enables the direct production of synthesis gas. To produce this in a climate-neutral way, the electrolysis reactor is operated with electricity generated from renewable sources.

In a subsequent Fischer-Tropsch reactor, also developed at IKTS, the synthesis gas is then converted into chemical raw materials - for example into long-chain hydrocarbons.

Increased efficiency of the power-to-X system

"We have demonstrated on a laboratory scale that the individual processes of a power-to-X system can be intelligently coupled and combined. This is what makes our reactor concept so efficient. In the next step towards upscaling, we will build a power-to-X plant with an output of 10 kW.

On the basis of previous laboratory results and realistic assumptions for the operation of the production plant on an economic scale, we expect a significant increase in efficiency compared to today's plants," explains Dr. Matthias Jahn, project manager and head of department Chemical Engineering at Fraunhofer IKTS.

Such an increase in efficiency to over 55 % can only be achieved through closed and thus environmentally friendly material and energy cycles. This means that by-products, such as short-chain hydrocarbons and waste heat, are no longer released into the environment, but flow directly back into the system.

"We are now looking at the next steps so that in the future many more products can be produced from CO2 emissions in a climate-neutral way. A reactor concept of this kind can also be applied to the production of lubricants, waxes for the cosmetics industry or the production of fuel additives with improved combustion properties," summarizes Dr. Matthias Jahn. The scientists are also focusing on further automation and controllability of the individual processes.

Transfer to pilot scale

Within the next three years, this reactor concept will be transferred to pilot scale at the Bergmann Kalk lime works in Kasendorf in Upper Franconia. Colyssy is the name of this ambitious project, which is funded by the German Federal Ministry of Education and Research and was launched at the beginning of the year as part of the HYPOS consortium.

"If we want to achieve sector coupling via power-to-X and reduce CO2 emissions, there must be economic incentives in the future. Political framework conditions need to be adapted in such a way that the additional costs incurred for climate-neutral production are offset and the product is still competitive," Sebastian Groppweis, managing director and co-owner of the family-run Johann Bergmann Kalk company, appeals to political decision-makers.

Weitere Informationen:

https://www.ikts.fraunhofer.de/en/press_media/press_releases/2019_10_ceramic_tec...

Dipl.-Chem. Katrin Schwarz | Fraunhofer-Institut für Keramische Technologien und Systeme IKTS

More articles from Life Sciences:

nachricht Growing and moving
10.10.2019 | University of Freiburg

nachricht Scientists find gender-distinct circuit for depression
10.10.2019 | Michigan State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How Do the Strongest Magnets in the Universe Form?

How do some neutron stars become the strongest magnets in the Universe? A German-British team of astrophysicists has found a possible answer to the question of how these so-called magnetars form. Researchers from Heidelberg, Garching, and Oxford used large computer simulations to demonstrate how the merger of two stars creates strong magnetic fields. If such stars explode in supernovae, magnetars could result.

How Do the Strongest Magnets in the Universe Form?

Im Focus: Liquifying a rocky exoplanet

A hot, molten Earth would be around 5% larger than its solid counterpart. This is the result of a study led by researchers at the University of Bern. The difference between molten and solid rocky planets is important for the search of Earth-like worlds beyond our Solar System and the understanding of Earth itself.

Rocky exoplanets that are around Earth-size are comparatively small, which makes them incredibly difficult to detect and characterise using telescopes. What...

Im Focus: Axion particle spotted in solid-state crystal

Scientists at the Max Planck Institute for Chemical Physics of Solids in Dresden, Princeton University, the University of Illinois at Urbana-Champaign, and the University of the Chinese Academy of Sciences have spotted a famously elusive particle: The axion – first predicted 42 years ago as an elementary particle in extensions of the standard model of particle physics.

The team found signatures of axion particles composed of Weyl-type electrons (Weyl fermions) in the correlated Weyl semimetal (TaSe₄)₂I. At room temperature,...

Im Focus: A cosmic pretzel

Twin baby stars grow amongst a twisting network of gas and dust

The two baby stars were found in the [BHB2007] 11 system - the youngest member of a small stellar cluster in the Barnard 59 dark nebula, which is part of the...

Im Focus: A fortress of ice and snow

MOSAiC expedition begins its ice drift on a floe at 85 degrees north and 137 degrees east

After only a few days of searching, experts from the MOSAiC expedition have now found a suitable ice floe, where they will set up the research camp for their...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Ceramic technologies for highly efficient power-to-X processes

10.10.2019 | Life Sciences

Growing and moving

10.10.2019 | Life Sciences

Scientists find gender-distinct circuit for depression

10.10.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>