Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ceramic technologies for highly efficient power-to-X processes

10.10.2019

The speedy reduction of worldwide CO2 emissions is one of the most pressing and challenging tasks of our time. Alongside the strategy of avoiding CO2 emissions altogether, there are a number of technologies which transform unavoidable CO2 into valuable products. But these so-called power-to-X processes are currently still inefficient and expensive. Scientists at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden have developed reactors based on ceramics, which use CO2 and water vapor to produce raw materials for the chemical industry in a much more efficient and climate-neutral way.

As one of the world’s largest economies, Germany ranks sixth worldwide in terms of CO2 emissions. In the industrial sector alone, 188 million tons of CO2 are produced each year.


Scientists at Fraunhofer IKTS develop ceramic technology concepts for highly efficient power-to-X processes.

© Fraunhofer IKTS

At the same time, Germany must significantly increase the share of renewable energies in its electricity supply in order to achieve its climate targets. However, these renewable energies fluctuate over time and are not unlimited. It is therefore important to use them intelligently and above all efficiently.

Various strategies are currently being pursued for the use of unavoidable CO2 emissions, for example to produce chemical raw materials (X). For this process to be as climate-neutral as possible, the power required for it must be obtained from renewable energies – in this way climate-damaging CO2 is used to manufacture climate-neutral products.

Current power-to-X processes still too expensive

However, such power-to-X processes are still too inefficient because they consist of many complex individual processes. Scientists at Fraunhofer IKTS have now succeeded in developing a pilot plant – consisting of ceramic-based reactors – in which CO2 can be converted into climate-neutral chemical raw materials. In these reactors, the individual processes are smartly coupled, and material and energy flows intensified. This increases efficiency compared to previous power-to-X processes.

Coupling co-electrolysis with Fischer-Tropsch synthesis

Unavoidable CO2 emissions occur in large quantities for example in the cement and lime industries. Fraunhofer IKTS uses a wide range of ceramic components and technologies to harness this CO2. For example, ceramic filter cartridges remove dust from exhaust fumes. The CO2 can only be filtered out by ceramic membranes after such coarse cleaning.

The CO2 thus obtained is converted into carbon monoxide at over 750 °C in a newly developed ceramic high-temperature electrolysis reactor. At the same time – and this is remarkable – hydrogen is produced from steam in the same reactor, hence the name co-electrolysis. Put together, carbon monoxide and hydrogen form synthesis gas.

The reactors used are electrolysis stacks (SOEC). They were developed at IKTS and have already successfully demonstrated a long-term stability of more than 4000 hours. Compared to established alkaline or PEM electrolysis, high-temperature electrolysis requires considerably less electrical energy and also enables the direct production of synthesis gas. To produce this in a climate-neutral way, the electrolysis reactor is operated with electricity generated from renewable sources.

In a subsequent Fischer-Tropsch reactor, also developed at IKTS, the synthesis gas is then converted into chemical raw materials - for example into long-chain hydrocarbons.

Increased efficiency of the power-to-X system

"We have demonstrated on a laboratory scale that the individual processes of a power-to-X system can be intelligently coupled and combined. This is what makes our reactor concept so efficient. In the next step towards upscaling, we will build a power-to-X plant with an output of 10 kW.

On the basis of previous laboratory results and realistic assumptions for the operation of the production plant on an economic scale, we expect a significant increase in efficiency compared to today's plants," explains Dr. Matthias Jahn, project manager and head of department Chemical Engineering at Fraunhofer IKTS.

Such an increase in efficiency to over 55 % can only be achieved through closed and thus environmentally friendly material and energy cycles. This means that by-products, such as short-chain hydrocarbons and waste heat, are no longer released into the environment, but flow directly back into the system.

"We are now looking at the next steps so that in the future many more products can be produced from CO2 emissions in a climate-neutral way. A reactor concept of this kind can also be applied to the production of lubricants, waxes for the cosmetics industry or the production of fuel additives with improved combustion properties," summarizes Dr. Matthias Jahn. The scientists are also focusing on further automation and controllability of the individual processes.

Transfer to pilot scale

Within the next three years, this reactor concept will be transferred to pilot scale at the Bergmann Kalk lime works in Kasendorf in Upper Franconia. Colyssy is the name of this ambitious project, which is funded by the German Federal Ministry of Education and Research and was launched at the beginning of the year as part of the HYPOS consortium.

"If we want to achieve sector coupling via power-to-X and reduce CO2 emissions, there must be economic incentives in the future. Political framework conditions need to be adapted in such a way that the additional costs incurred for climate-neutral production are offset and the product is still competitive," Sebastian Groppweis, managing director and co-owner of the family-run Johann Bergmann Kalk company, appeals to political decision-makers.

Weitere Informationen:

https://www.ikts.fraunhofer.de/en/press_media/press_releases/2019_10_ceramic_tec...

Dipl.-Chem. Katrin Schwarz | Fraunhofer-Institut für Keramische Technologien und Systeme IKTS

More articles from Life Sciences:

nachricht Researchers discover vaccine to strengthen the immune system of plants
24.01.2020 | Westfälische Wilhelms-Universität Münster

nachricht Brain-cell helpers powered by norepinephrine during fear-memory formation
24.01.2020 | RIKEN

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Integrate Micro Chips for electronic Skin

Researchers from Dresden and Osaka present the first fully integrated flexible electronics made of magnetic sensors and organic circuits which opens the path towards the development of electronic skin.

Human skin is a fascinating and multifunctional organ with unique properties originating from its flexible and compliant nature. It allows for interfacing with...

Im Focus: Dresden researchers discover resistance mechanism in aggressive cancer

Protease blocks guardian function against uncontrolled cell division

Researchers of the Carl Gustav Carus University Hospital Dresden at the National Center for Tumor Diseases Dresden (NCT/UCC), together with an international...

Im Focus: New roles found for Huntington's disease protein

Crucial role in synapse formation could be new avenue toward treatment

A Duke University research team has identified a new function of a gene called huntingtin, a mutation of which underlies the progressive neurodegenerative...

Im Focus: A new look at 'strange metals'

For years, a new synthesis method has been developed at TU Wien (Vienna) to unlock the secrets of "strange metals". Now a breakthrough has been achieved. The results have been published in "Science".

Superconductors allow electrical current to flow without any resistance - but only below a certain critical temperature. Many materials have to be cooled down...

Im Focus: Programmable nests for cells

KIT researchers develop novel composites of DNA, silica particles, and carbon nanotubes -- Properties can be tailored to various applications

Using DNA, smallest silica particles, and carbon nanotubes, researchers of Karlsruhe Institute of Technology (KIT) developed novel programmable materials....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

 
Latest News

Researchers discover vaccine to strengthen the immune system of plants

24.01.2020 | Life Sciences

Brain-cell helpers powered by norepinephrine during fear-memory formation

24.01.2020 | Life Sciences

Engineered capillaries model traffic in tiny blood vessels

24.01.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>