Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Cancer cachexia: Extracellular ligand helps to prevent muscle loss


Cancer cachexia is a complex metabolic disease accounting for approximately one third of all cancer-related deaths worldwide. So far, there is no effective therapy for this muscle wasting disease. Researchers from the Leibniz Institute on Aging – Fritz Lipmann Institute (FLI) in Jena, Germany, show that the extracellular ligand Wnt7a effectively counteracts muscle wasting through activation of the anabolic AKT/mTOR pathway and thereby reverts the loss of muscle stem cell functionality and muscle mass. The results have now been published in the journal Molecular Therapy: Oncolytics.

Cancer Cachexia often occurs in cancer patients in an advanced state. This metabolic wasting syndrome leads to severely reduced muscle mass and fat tissue, which cannot be reversed by nutritional support. Furthermore, muscle regeneration is affected during cancer cachexia due to impaired muscle stem cell function.

Wnt7a has a dual function in cachectic skeletal muscle: it counteracts muscle wasting and reverts the loss of muscle stem cell functionality.

Source: Magdalena Voll / FLI

A problem that also occurs often in the aging process. Cancer cachexia is associated with a poor prognosis for patients, since it weakens patients towards a point that no further therapy, such as chemotherapy or surgery can be tolerated. So far, this multifactorial syndrome has not been fully understood and effective therapies are still lacking.

The research group “Stem Cells of Skeletal Muscle” lead by Dr. Julia von Maltzahn at the Leibniz Institute on Aging – Fritz Lipmann Institute (FLI) in Jena, Germany, investigated the extracellular ligand Wnt7a and was able to show its positive influence on muscle mass and muscle stem cells in cancer cachexia independently of the tumor cell type causing cachexia.

Wnt7a has already been in focus in muscular dystrophy studies: “It was already known, that Wnt7a ameliorates muscular dystrophy”, explains Dr. Julia von Maltzahn, junior group leader at the FLI. “We were interested if similar positive effects also occur in cancer cachexia.” The results of their studies have now been published in the open access journal Molecular Therapy: Oncolytics.

Influence of Wnt7a on muscle mass

The research group was able to show in human skeletal muscle cell lines and in a mouse model that Wnt7a treatment counteracted muscle wasting and improved muscle stem cell differentiation – two major symptoms of cachexia in cancer patients. The extracellular ligand Wnt7a activates the anabolic AKT/mTOR pathway in myofibers and reverts the loss of muscle stem cell functionality.

“Our results show that Wnt7a has a dual function in skeletal muscle: it activates an important signaling pathway enhancing muscle mass and drives muscle stem cell expansion in skeletal muscle, which is necessary for regeneration”, says Dr. Manuel Schmidt, postdoc in the research group. This makes Wnt7a a promising candidate for the treatment of muscle wasting diseases also in humans, since the protein has the same function in mice and men.

Wnt7a is able to prevent muscle loss in cancer cachexia making it a potential candidate to be used during treatment or surgeries. In addition, the extracellular ligand could be used as a supportive treatment during therapy/surgery. Wnt7a leads to an increase in the stem cell population in the muscle, which supports muscle regeneration after surgery. Following these research results, the researchers are now testing further possible applications.


Schmidt M, Poser C, von Maltzahn J, Wnt7a counteracts cancer cachexia, Molecular Therapy: Oncolytics (2020), doi:


Magdalena Voll
Press and Public Relations
Phone: 03641 656378, email:

Background information

The Leibniz Institute on Aging – Fritz Lipmann Institute (FLI) – upon its inauguration in 2004 – was the first German research organization dedicated to research on the process of aging. More than 350 employees from around 40 nations explore the molecular mechanisms underlying aging processes and age-associated diseases. For more information, please visit

The Leibniz Association connects 96 independent research institutions that range in focus from the natural, engineering and environmental sciences via economics, spatial and social sciences to the humanities. Leibniz Institutes address issues of social, economic and ecological relevance. They conduct knowledge-driven and applied basic research, maintain scientific infrastructure and provide research-based services. The Leibniz Association identifies focus areas for knowledge transfer to policy-makers, academia, business and the public. Leibniz Institutes collaborate intensively with universities – in the form of “WissenschaftsCampi” (thematic partnerships between university and non-university research institutes), for example – as well as with industry and other partners at home and abroad. They are subject to an independent evaluation procedure that is unparalleled in its transparency. Due to the institutes’ importance for the country as a whole they are funded jointly by the Federation and the Länder, employing some 20,000 individuals, nearly half of whom are researchers. The entire budget of all the institutes is approximately 2.1 billion EUR. See for more information.


Schmidt M, Poser C, von Maltzahn J, Wnt7a counteracts cancer cachexia, Molecular Therapy: Oncolytics (2020), doi:

Dr. Kerstin Wagner | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht First SARS-CoV-2 genomes in Austria openly available
03.04.2020 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

nachricht Do urban fish exhibit impaired sleep? Light pollution suppresses melatonin production in European perch
03.04.2020 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Harnessing the rain for hydrovoltaics

Drops of water falling on or sliding over surfaces may leave behind traces of electrical charge, causing the drops to charge themselves. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz have now begun a detailed investigation into this phenomenon that accompanies us in every-day life. They developed a method to quantify the charge generation and additionally created a theoretical model to aid understanding. According to the scientists, the observed effect could be a source of generated power and an important building block for understanding frictional electricity.

Water drops sliding over non-conducting surfaces can be found everywhere in our lives: From the dripping of a coffee machine, to a rinse in the shower, to an...

Im Focus: A sensational discovery: Traces of rainforests in West Antarctica

90 million-year-old forest soil provides unexpected evidence for exceptionally warm climate near the South Pole in the Cretaceous

An international team of researchers led by geoscientists from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) have now...

Im Focus: Blocking the Iron Transport Could Stop Tuberculosis

The bacteria that cause tuberculosis need iron to survive. Researchers at the University of Zurich have now solved the first detailed structure of the transport protein responsible for the iron supply. When the iron transport into the bacteria is inhibited, the pathogen can no longer grow. This opens novel ways to develop targeted tuberculosis drugs.

One of the most devastating pathogens that lives inside human cells is Mycobacterium tuberculosis, the bacillus that causes tuberculosis. According to the...

Im Focus: Physicist from Hannover Develops New Photon Source for Tap-proof Communication

An international team with the participation of Prof. Dr. Michael Kues from the Cluster of Excellence PhoenixD at Leibniz University Hannover has developed a new method for generating quantum-entangled photons in a spectral range of light that was previously inaccessible. The discovery can make the encryption of satellite-based communications much more secure in the future.

A 15-member research team from the UK, Germany and Japan has developed a new method for generating and detecting quantum-entangled photons at a wavelength of...

Im Focus: Junior scientists at the University of Rostock invent a funnel for light

Together with their colleagues from the University of Würzburg, physicists from the group of Professor Alexander Szameit at the University of Rostock have devised a “funnel” for photons. Their discovery was recently published in the renowned journal Science and holds great promise for novel ultra-sensitive detectors as well as innovative applications in telecommunications and information processing.

The quantum-optical properties of light and its interaction with matter has fascinated the Rostock professor Alexander Szameit since College.

All Focus news of the innovation-report >>>



Industry & Economy
Event News

13th AKL – International Laser Technology Congress: May 4–6, 2022 in Aachen – Laser Technology Live already this year!

02.04.2020 | Event News

“4th Hybrid Materials and Structures 2020” takes place over the internet

26.03.2020 | Event News

Most significant international Learning Analytics conference will take place – fully online

23.03.2020 | Event News

Latest News

Capturing 3D microstructures in real time

03.04.2020 | Materials Sciences

First SARS-CoV-2 genomes in Austria openly available

03.04.2020 | Life Sciences

Do urban fish exhibit impaired sleep? Light pollution suppresses melatonin production in European perch

03.04.2020 | Life Sciences

Science & Research
Overview of more VideoLinks >>>