Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Building New Moss Factories

20.10.2017

New EU project will promote the environmentally friendly production of complex molecules for medicine and industry

For millions of years, plants have been producing highly complex molecules out of simple chemical building blocks, sustainably and cheaply. Many of these chemical substances are used in medicine and the perfume industry today. Prof. Dr. Ralf Reski from the Faculty of Biology of the University of Freiburg, Germany, will be further developing a variety of mosses as sustainable and fast-growing molecule factories in the MossTech project.


Moss cells in an Erlenmeyer-flask. Photo: Sigrid Gombert (Freiburg)

The project’s coordinator is the Technical University of Denmark in Copenhagen, and participants include the University of Lund in Sweden, the Gulbenkian Institute in Portugal, and the companies Taxa Biotechnologies from the US, Transactiva from Italy, ArcticMass from Island, and Mosspiration Biotech from Denmark. As an EU-designated Innovative Training Network (ITN), the project will receive €1.6 million from the EU over the next four years as part of its Horizon 2020 program. Roughly €500,000 will go to the University of Freiburg.

Next to seed plants, mosses are the second largest group of land plants today. Prof. Dr. Reski, who is a plant biotechnologist, and his research lab were able to demonstrate that the genome of the moss Physcomitrella patens has roughly 10,000 more genes than the human genome, and that many of these genes are responsible for the synthesis of highly complex chemical molecules, including long-chain polyunsaturated fatty acids.

The group of scientists at the University of Freiburg have also developed genetic engineering methods that enabled them to change the moss genome in a targeted and precise manner. Similar genome editing methods using CRISPR/Cas9 technology on other plants and animals have also earned much attention in the past.

Of the six PhD students who will be involved in the MossTech project, two will spend a year at the University of Freiburg learning these methods before continuing to develop them for another two years with one of the project’s industrial partners in Denmark or Italy. The goal is to apply these methods to mosses that have not yet been researched in the hopes of cheaply and safely producing complex fine chemicals in genetically modified mosses.

"I’m excited that we were able to convince four (for us) new small and medium-sized businesses to support moss engineering. This gives us a new opportunity to translate our research into actual products,” Reski said. “After completing this very international and practice-oriented training, our young researchers will have excellent prospects on the European labor market.”

The biologists at the University of Freiburg are specialized in moss research and have made a significant contribution to the development of mosses as a global model organism in biology and biotechnology. Ralf Reski is a biologist and the Chair of Plant Biotechnology at the University of Freiburg. He is also a member of the cluster of excellence BIOSS Center for Biological Signalling Studies and was a senior fellow at the Freiburg Institute for Advanced Studies (FRIAS) and its French counterpart the University of Strasbourg Institute for Advanced Study (USIAS).

Chair Plant Biotechnology at the University of Freiburg
http://www.plant-biotech.net

MossTech Project
http://www.mosstech.eu

Contact:
Prof. Dr. Ralf Reski
Faculty of Biology
Chair Plant Biotechnology
University of Freiburg, Germany
Phone: +49 (0)761/203-6968
E-Mail: pbt@biologie.uni-freiburg.de

Weitere Informationen:

https://www.pr.uni-freiburg.de/pm-en/2017/building-new-moss-factories

Rudolf-Werner Dreier | Albert-Ludwigs-Universität Freiburg im Breisgau

More articles from Life Sciences:

nachricht Polarization of Br2 molecule in vanadium oxide cluster cavity and new alkane bromination
13.07.2020 | Kanazawa University

nachricht Researchers present concept for a new technique to study superheavy elements
13.07.2020 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron cryo-microscopy: Using inexpensive technology to produce high-resolution images

Biochemists at Martin Luther University Halle-Wittenberg (MLU) have used a standard electron cryo-microscope to achieve surprisingly good images that are on par with those taken by far more sophisticated equipment. They have succeeded in determining the structure of ferritin almost at the atomic level. Their results were published in the journal "PLOS ONE".

Electron cryo-microscopy has become increasingly important in recent years, especially in shedding light on protein structures. The developers of the new...

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

Black phosphorus-based van der Waals heterostructures for mid-infrared light-emission applications

13.07.2020 | Physics and Astronomy

Polarization of Br2 molecule in vanadium oxide cluster cavity and new alkane bromination

13.07.2020 | Life Sciences

Researchers present concept for a new technique to study superheavy elements

13.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>