Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Biophysicists reveal how optogenetic tool works


An international research team has for the first time obtained the structure of the light-sensitive sodium-pumping KR2 protein in its active state. The discovery provides a description of the mechanism behind the light-driven sodium ion transfer across the cell membrane. The paper came out in Nature Communications.

KR2 is a member of a very large family of microbial rhodopsins -- light-sensitive proteins present in the cell membrane of archaea, bacteria, viruses, and eukaryotes.

Left: KR2 rhodopsin pentamer in its active state in the cell membrane (two horizontal disks). Right: sodium binding site in the active center of the protein. The distances to the oxygen atoms coordinating sodium are given in angstroms, or ten-billionths of a meter. The black grid is the electron density map. The violet sphere denotes a sodium ion.

Credit: Kirill Kovalev

These proteins have a wide range of functions, including light-driven transport of ions across the membrane. Such ion channels and pumps are the primary tools of optogenetics, a booming field in biomedicine with a focus on controlling cells in the body by illuminating them with light.

Optogenetics came to prominence due to its contributions to minimally invasive techniques for brain research and neurodegenerative disorder treatments addressing Alzheimer's, Parkinson's, and other diseases. Beyond that, optogenetics enables reversing vision and hearing loss and restoring muscle activity.

Despite its many successes, further development of optogenetics is complicated by the limited number of available proteins suitable for cell activation and inhibition. For example, the most widely used optogenetic tool, channelrhodopsin 2, whose structure was originally reported in Science by MIPT researchers and graduates, can transport both sodium, potassium, and calcium ions, as well as protons.

The protein's low selectivity leads to undesirable side effects on cells. As a result, optimizing the protocols for using optogenetic tools is currently costly and time-intensive.

The search for new, more selective proteins is a priority for optogenetics. One of the candidates, the KR2 rhodopsin discovered in 2013, is a unique tool that selectively transports only the sodium ions across the membrane under physiological conditions. Understanding how KR2 works is crucial for optimizing the functional characteristics of that protein and using it as the basis for new optogenetic tools.

MIPT biophysicists published the first structures of KR2 in its various forms in 2015 and 2019. Among other things, they showed that the protein organizes into pentamers in the membrane, and that such behavior is vital to its functioning.

However, all the models described so far have looked at the protein in its inactive, or ground state. Yet it is only in the active state -- after illumination -- that the protein actually transports sodium. To understand how the KR2 pump works, the researchers have now obtained and described its high-resolution structure in the active state.

"We began by using the traditional approach, activating KR2 in pregrown protein crystals by illuminating them with a laser and getting a snapshot of the active state by rapidly freezing the crystals at 100 kelvins," said the study's first author, MIPT doctoral student Kirill Kovalev.

"We got lucky, because such manipulations may well destroy the crystals. To avoid this, we had to fine-tune the laser wavelength and power and find the optimal exposure time."

Producing the large number of high-quality KR2 rhodopsin crystals necessary for the experiments has been made possible by the unique equipment of the MIPT Research Center for Molecular Mechanisms of Aging and Age-Related Diseases.

The most significant finding of the study is identifying the amino acid residues of the protein that bind the sodium ion inside the KR2 molecule. They are the factor that determines the rhodopsin selectivity toward a particular type of ions. In addition to that, a high-resolution structure for the protein's active state at 2.1 angstroms -- 21 hundred-billionths of a meter -- has revealed the precise configuration of the sodium ion binding site at the protein's active center.

For the first time, the team showed that the binding site of KR2 has become optimized for sodium ions in the course of rhodopsin evolution. This means that the active state structure obtained in the study is best-suited for the rational design of next-generation KR2-based optogenetic tools.

"In the course of our work, we also obtained the active-state KR2 structure at room temperature," Kovalev added. "To achieve this, we had to update the well-known protocols for collecting crystallographic data. Besides, we employed a synchrotron radiation source to leverage the serial crystallography techniques, which are growing popular right now."

The room temperature KR2 structure confirmed that the protein model produced from a low-temperature snapshot is correct. This provided a direct demonstration that cryogenic freezing did not affect the rhodopsin's internal structure.

The structures reported in the paper have allowed the scientists to provide a first-ever description of active light-driven sodium ion transport across the cell membrane. Specifically, the study shows that sodium transport most likely involves a hybrid mechanism comprised by relay proton transport and passive ion diffusion through polar cavities in the protein. The mechanism proposed by the researchers has been confirmed via functional studies of mutated KR2 forms and molecular dynamics simulations of sodium ion release from the protein.

"Ion transport across the cell membrane is a fundamental biological process. That said, sodium ion transport should be enabled by a mechanism distinct from that involved in proton transport," explains Valentin Gordeliy, the director for research at the Grenoble institute for Structural Biology and the scientific coordinator of the MIPT Research Center for Molecular Mechanisms of Aging and Age-Related Diseases. "For the first time, we see how a sodium ion is bound inside the rhodopsin molecule and understand the mechanism for ion release into the intercellular space."

The biophysicists are convinced that their findings not only reveal the fundamental principles underlying ion transport across the membrane but will be of use to optogenetics. MIPT is continuing the development of optimized KR2 protein forms to expand the toolkit for brain research and neurodegenerative disease therapies.


The study reported in this story featured researchers from the Moscow Institute of Physics and Technology (Russia); the University of Grenoble and the European Synchrotron Radiation Facility (France); Jülich Research Center, Aachen University, Max Planck Institute of Biophysics, and the European Molecular Biology Laboratory (Germany); as well as the ALBA synchrotron facility in Spain.

The study was supported by the Russian Ministry of Science and Higher Education and the Russian Foundation for Basic Research.

Media Contact

Varvara Bogomolova


Varvara Bogomolova | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Shedding light on the brown color of algae
14.07.2020 | Johannes Gutenberg-Universität Mainz

nachricht New substance library to accelerate the search for active compounds
14.07.2020 | Helmholtz-Zentrum Berlin für Materialien und Energie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron cryo-microscopy: Using inexpensive technology to produce high-resolution images

Biochemists at Martin Luther University Halle-Wittenberg (MLU) have used a standard electron cryo-microscope to achieve surprisingly good images that are on par with those taken by far more sophisticated equipment. They have succeeded in determining the structure of ferritin almost at the atomic level. Their results were published in the journal "PLOS ONE".

Electron cryo-microscopy has become increasingly important in recent years, especially in shedding light on protein structures. The developers of the new...

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Latest News

Shedding light on the brown color of algae

14.07.2020 | Life Sciences

Color barcode becomes ISO standard

14.07.2020 | Information Technology

New substance library to accelerate the search for active compounds

14.07.2020 | Life Sciences

Science & Research
Overview of more VideoLinks >>>