Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Access control for proteins

26.11.2018

The trans-Golgi network (TGN) is the central hub for the transport of proteins within and out of cells. As protein transport is essential for cell biology, the cell closely regulates which proteins are packaged and transported in vesicles. However, the process by which non-signal-carrying proteins are packaged is still poorly understood. A study carried out by the Research Group led by Julia von Blume at the Max Planck Institute of Biochemistry in Martinsried in collaboration with Christopher Burd’s Research Group at Yale University has now shown that the sorting of proteins into vesicles and lipid synthesis at the TGN are molecularly coupled. The study was published in Developmental Cell.

To travel by public transport, passengers must present a valid ticket. Often, tickets are checked before departure, so that only passengers with a ticket are allowed to board.


Artistic representation of secretory vesicle formation at the trans-Golgi network (TGN). Hot-air balloons represent secretory vesicles containing secretory cargo proteins that bud from the TGN.

© Mai Ly Tran (submitted to Developmental Cell)

A key transport role in cells of higher organisms is played by the trans-Golgi network (TGN). The TGN delivers proteins to their destination in the cell or shuttles them out of the cell. With this means of transport as well, a form of access control is carried out, so that only the correct proteins are packaged into transport vesicles – small membrane-enclosed sacs.

Admission control in the cellular freight system

A group of proteins that are anchored in the membrane are known to display a signal motif that allows them access to the vesicles. However, the TGN also transports proteins which do not display such a “ticket”, and it is unclear how their transport is controlled. Many proteins occur in high concentrations or even in pure form in vesicles, indicating that they are not just stowaways or randomly selected cargo.

To investigate how such ticketless proteins gain access to transport vesicles, the scientists took advantage of the fact that the TGN not only transports proteins but also lipids. Among them is a lipid called sphingomyelin, which is produced in the TGN and then transported via vesicles into the cell membrane. In the past, Christopher Burd’s group at Yale developed a method to detect and track sphingomyelin-containing vesicles. In this way, the researchers were able to show that a sphingomyelin-dependent pathway exists by means of which proteins are shuttled out of the cell.

However, it was not known whether sphingomyelin itself is needed for protein packaging. To shed light on this question, the researchers used a proteomic approach in their current study, which involves analysing the entire set of proteins in a cell. “We searched through the passenger lists of all sphingomyelin-containing transport vesicles, as it were.

We discovered that a protein called Cab45 is present in all vesicles,” explains Mehrshad Pakdel, lead author of the study and doctoral student at the Max Planck Institute of Biochemistry. “However, this was only the case when Cab45 had bound calcium.”

Presorting of the protein freight
In earlier studies, Julia von Blume’s Group at the Max Planck Institute of Biochemistry had shown that Cab45 can bind secretory proteins, thus increasing their concentration locally.

This could be the step that corresponds to a ticket check: “This ensures that proteins are not packaged arbitrarily, but only those that are meant to be transported. The proteins are presorted, so to speak,” Pakdel explains. Cab45 alone, however, is not sufficient.

A calcium pump and the production of sphingomyelin are also needed. With the help of a by-product, synthesis of the lipid causes the TGN membrane to curve in upon itself and produce transport vesicles.

The researchers were able to show that the activity of the calcium pump in the TGN activates Cab45 and ensures that a protein to be transported accumulates locally. The production of sphingomyelin, which is synthesised in the TGN and occurs in the vesicle membrane, is locally coupled to the two preceding processes.

Thus, all steps – from the “ticket check” of the proteins to the formation of membrane-bound vesicles to the packaging of proteins in the transport system – are interconnected.

“Our study shows that three components are needed to move proteins into their transport vesicles: the sorter Cab45, a calcium pump that activates the sorter and the lipid sphingomyelin. If one of the three components is missing, a backlog of proteins to be transported builds up. Ultimately, however, they are indiscriminately packaged into transport vesicles,” says Julia von Blume, summing up the findings.

She points out that dysfunctions of the Golgi apparatus are associated with a variety of disorders, such as neurodegenerative diseases. “It’s therefore all the more important to understand how cells control their freight system and always manage to transport the right proteins to the right destination at the right time.” [CW]

About Julia von Blume
Julia von Blume studied biology at the University of Constance and received her PhD from the University of Ulm in 2006. She performed post-doctoral research at the University of California San Diego, USA and at the Center for Genomic Regulation in Barcelona. In 2012, von Blume became the leader of the independent research group “Molecular Basis of Protein Trafficking” at the Max Planck Institute of Biochemistry in Martinsried near Munich.

About the Max Planck Institute of Biochemistry
The Max Planck Institute of Biochemistry (MPIB) belongs to the Max Planck Society, an independent, non-profit research organization dedicated to top-level basic research. As one of the largest Institutes of the Max Planck Society, about 800 employees from 45 nations work here in the field of life sciences. In currently about 35 departments and research groups, the scientists contribute to the newest findings in the areas of biochemistry, cell biology, structural biology, biophysics and molecular science. The MPIB in Munich-Martinsried is part of the local life-science-campus in close proximity to the Max Planck Institute of Neurobiology, a Helmholtz Center, the Gene-Center, several bio-medical faculties of the Ludwig-Maximilians-Universität München and the Innovation and Founding Center Biotechnology (IZB). http://biochem.mpg.de

Wissenschaftliche Ansprechpartner:

Dr. Julia von Blume
Molecular Basis of Protein Trafficking
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried/Munich
Germany
E-mail: vonblume@biochem.mpg.de
http://www.biochem.mpg.de/en/rg/blume

Originalpublikation:

Y. Deng*, M. Pakdel*, B. Blank, E.L. Sundberg, C.G. Burd, J. von Blume: Activity of the SPC1 calcium pump couples sphingomyelin synthesis to sorting of secretory proteins in the trans-Golgi network. Developmental Cell, November 2018 (*equal contributions)

Dr. Christiane Menzfeld | Max-Planck-Institut für Biochemie

Further reports about: Biochemie Max-Planck-Institut calcium pump proteins pump sphingomyelin synthesis vesicles

More articles from Life Sciences:

nachricht Mass spectrometry sheds new light on thallium poisoning cold case
14.12.2018 | University of Maryland

nachricht Protein involved in nematode stress response identified
14.12.2018 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>