Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stabilizing freeze-dried cellular machinery unlocks cell-free biotechnology

26.02.2020

A low-cost approach improves cell-free biotechnology's utility for bio-manufacturing and portability for field applications

Researchers at California Polytechnic State University have developed a low-cost approach that improves cell-free biotechnology's utility for bio-manufacturing and portability for field applications.


Preservative formulations have been discovered to improve storage of cell-free components at room temperature. Through the use of machine learning algorithm, researchers can now identify preservatives that will enable their cell-free biotechnology applications outside of the lab for on-demand protein synthesis, point-of -care biosensing or therapeutic production, and biochemical education.

Credit: Nicole Gregorio

Cell-free protein synthesis (CFPS) is a biotechnology that harnesses active cellular machinery in a test tube without the presence of living cells, allowing researchers to directly access and manipulate biochemical processes.

Scientists and engineers are looking to utilize cell-free biotechnology for numerous applications including on-demand biomanufacturing of biomaterials and therapeutics, point-of-care diagnostics of disease biomarkers and environmental pollutants, and transformative biochemical education platforms.

Cell-free biotechnology researchers have already made many of these applications a reality in the lab, but getting them to work in the field, clinic and classroom is more difficult.

The cellular machinery extracted for use in cell-free biotechnology contains biomolecules such as proteins and RNAs, which break down at warmer temperatures, greatly limiting the shelf life of the cellular machinery.

Transporting it from one laboratory to another or taking it out of the lab for field applications requires refrigeration to maintain its activity. Being tethered to the "cold chain" is a fundamental limit to meeting cell-free biotechnology's potential.

Inspired by storage optimizations of biological materials like cow's milk, researchers have previously extended the shelf life of extracts by freeze-drying them, resulting in a product similar to powdered milk that can be stored at room temperature for extended time periods.

However, unlike powdered milk, freeze-dried cellular machinery cannot be stored for more than a few days without continual loss of activity. Researchers at California Polytechnic State University have discovered low-cost preservatives that allow freeze-dried cellular machinery to retain full activity when stored at room temperature for up to two weeks.

To accomplish this, a team of undergraduate student researchers pursued an interdisciplinary approach led by professors Javin Oza, Katharine Watts and Pratish Patel. As published in the journal ACS Synthetic Biology, researchers selected 10 preservatives with four distinct mechanisms of action and systematically identified the best performers, which were then tested in combinations of two or three.

This approach allowed the researchers to identify combinations of preservatives that could maintain the full productivity of the cellular machinery for two weeks at room temperature. Researchers also discovered that certain combinations of preservatives could enhance the protein-producing capacity of the cellular machinery nearly two-fold.

Researchers demonstrated that the utility of any given preservative for stabilizing biological materials is highly context dependent. To help overcome this limitation, their data was used to develop a machine learning algorithm to allow other users to identify preservative formulations that are ideal for their specific application of the cell-free biotechnology. Access to the machine learning algorithm through a user-friendly interface will soon be available to the public on http://www.oza-lab.com.

These advances represent a step toward unlocking the potential for cell-free biotechnology applications. More information about this work can be found in the publication entitled "Unlocking applications of cell-free biotechnology through enhanced shelf-life and productivity of E. coli extracts."

Media Contact

Javin P. Oza
joza@calpoly.edu
805-756-2265

 @CalPoly

http://www.calpoly.edu 

Javin P. Oza | EurekAlert!
Further information:
http://dx.doi.org/10.1021/acssynbio.9b00433

More articles from Interdisciplinary Research:

nachricht A fresh twist in chiral topology
22.06.2020 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Unlocking PNA's superpowers for self-assembling nanostructures
12.06.2020 | College of Engineering, Carnegie Mellon University

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

X-ray scattering shines light on protein folding

10.07.2020 | Life Sciences

Looking at linkers helps to join the dots

10.07.2020 | Materials Sciences

Surprisingly many peculiar long introns found in brain genes

10.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>