Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Global goal frenzy

28.11.2001


English clubs: statistically sound or struggling to score?
© AP/Martyn Hayhow


It’s official: English football teams score fewer goals.

Soccer teams worldwide are scoring more goals than they ought to be, whereas English teams seem to follow statistical expectations. The news may delight fans outside England, but it is puzzling the physicists who have found that the chance of a high-scoring game is significantly greater than it may first appear1.

John Greenhough and colleagues at Warwick University in Coventry, England, analysed the scores of over 135,000 football (soccer) games in the domestic leagues of 169 countries, played between and 1999 and 2001.



They found that games with a total of more than 10 goals occur only once in 10,000 English top division matches (about once every 30 years), whereas they make up about one in every 300 games worldwide - which means that there is roughly one per day.

Low scoring games seem to follow a random probability distribution: the chance of a particular score is more-or-less what one would expect if there is a constant, random probability of a goal at any moment throughout the game.

In such a random process, bigger scores become increasingly unlikely. There are more 1-1 draws or 2-0 victories than there are 6-1 victories, for example. According to the rules of statistics, the chance of a high score should become less and less likely, the higher the scores become - something called a Poisson distribution.

But physicists have known for several decades that football games are far from normal. The chance of goal scoring doesn’t stay even throughout a match, but depends on the previous number of near-goals. The Poisson distribution can be modified to allow for this, resulting in a ’negative binomial probability distribution’.

In a further analysis Greenhough and colleagues find that for English league and championship matches for the seasons 1970-1971 and 2000-2001 the total scores of all matches fit a negative binomial distribution well. In contrast, domestic matches worldwide produce many more ’extreme events’ (high scores) than predicted by this statistical distribution.

Why the difference? Does it mean that the English defence or goalkeepers are unusually good, or the strikers are unusually poor? Possibly, but there may be a statistical explanation: in terms of probability, football games may behave more like the stock market or earthquakes.

In recent years, statistical physicists have realized that probabilistic processes underlying these complex phenomena show something called strong correlations.

Correlations arise when the behaviour of one part of a system is strongly influenced by the behaviour of other parts. In football, this suggests that goals become increasingly likely as their number mounts up. Fans and players will already have an intuitive notion of the effect. When trailing by 5-0, say, a defence is more likely to ’crack’ than when the score is 2-0. Even if the teams are well matched, the game becomes more ’volatile’ if it reaches, say, 4-4: goals then begin to flow more readily.

Why English teams don’t show this effect so strongly is a question sure to provoke endless debate among armchair strategists.

References

  1. Greenhough, J., Birch, P. C., Chapman, S. C.& Rowlands, G. Football goal distributions and extremal statistics. Preprint, (2001).


PHILIP BALL | © Nature News Service
Further information:
http://www.nature.com/nsu/011129/011129-8.html

More articles from Interdisciplinary Research:

nachricht Epilepsy: Seizures not forecastable as expected
25.09.2019 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Dresden creates ground-breaking interface between technology and medicine
05.09.2019 | Technische Universität Dresden

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

Im Focus: How Do the Strongest Magnets in the Universe Form?

How do some neutron stars become the strongest magnets in the Universe? A German-British team of astrophysicists has found a possible answer to the question of how these so-called magnetars form. Researchers from Heidelberg, Garching, and Oxford used large computer simulations to demonstrate how the merger of two stars creates strong magnetic fields. If such stars explode in supernovae, magnetars could result.

How Do the Strongest Magnets in the Universe Form?

Im Focus: Liquifying a rocky exoplanet

A hot, molten Earth would be around 5% larger than its solid counterpart. This is the result of a study led by researchers at the University of Bern. The difference between molten and solid rocky planets is important for the search of Earth-like worlds beyond our Solar System and the understanding of Earth itself.

Rocky exoplanets that are around Earth-size are comparatively small, which makes them incredibly difficult to detect and characterise using telescopes. What...

Im Focus: Axion particle spotted in solid-state crystal

Scientists at the Max Planck Institute for Chemical Physics of Solids in Dresden, Princeton University, the University of Illinois at Urbana-Champaign, and the University of the Chinese Academy of Sciences have spotted a famously elusive particle: The axion – first predicted 42 years ago as an elementary particle in extensions of the standard model of particle physics.

The team found signatures of axion particles composed of Weyl-type electrons (Weyl fermions) in the correlated Weyl semimetal (TaSe₄)₂I. At room temperature,...

Im Focus: A cosmic pretzel

Twin baby stars grow amongst a twisting network of gas and dust

The two baby stars were found in the [BHB2007] 11 system - the youngest member of a small stellar cluster in the Barnard 59 dark nebula, which is part of the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Electrochemistry to benefit photonics: Nanotubes can control laser pulses

11.10.2019 | Physics and Astronomy

Biologically inspired skin improves robots' sensory abilities (Video)

11.10.2019 | Power and Electrical Engineering

New electrolyte stops rapid performance decline of next-generation lithium battery

11.10.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>