Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why bees soared and slime flopped as inspirations for systems engineering

19.02.2018

When to model nature in engineering and when perhaps not to: AAAS annual meeting presentation

Bees? Great. Ants? Hit or miss. Slime mold amoebas? Fail. Though nature offers excellent design inspirations in some information technology systems, in other systems, it can bomb.


Beekeepers on the roof of the G. Wayne Clough Undergraduate Learning Commons building at the Georgia Institute of Technology.

Credit: Georgia Tech / Fitra Hamid

Usage Restrictions: Free for reporting on research and education at Georgia Tech.

Known for his work on The Honey Bee Algorithm, which tamed web traffic instabilities on servers by mimicking the behavior of bee colonies, systems researcher Craig Tovey has seen plenty of nature-inspired technological feats, but also foibles. He's sharing them in a talk on Sunday, February 18, at the annual meeting of the American Association for the Advancement of Science in Austin, Texas.

(To attend, see: "What Systems Engineers Can Learn from Honey Bees and Other Organisms, 4:30 p.m. Central, Austin Convention Center, room 18B.)

In 2016, the bee-inspired algorithm garnered Tovey and his collaborators a Golden Goose Award, which commends curiosity-driven research as it blossoms to palpably benefit society. The Honey Bee Algorithm, for example, significantly reduced web hosting costs.

"We lucked out with the bees and web hosting," said Tovey, who hopes that along with practical takeaways on naturally inspired technology, his audience will also share in his own awe and affection for nature's solutions.

When algorithms are eternal

"When you study swarming bees, you discover truths that are lasting. The algorithms that guide them evolved over millions of years, and will hopefully still be there for millions of years to come," said Tovey, a co-director of Georgia Tech's Center for Biologically Inspired Design. "Compare that with when you design a new microcircuit. Three years later it's gone, forever lost; replaced by new designs."

Whether mimicking nature is prudent in a particular engineering job depends a lot on the problem to be solved. Often, it's just better to use something off the shelf or adapt it.

"When the real-life problem is static and well-defined with predictable data, then the nature-inspired methods are usually much weaker, much worse than classical optimization methods," Tovey said.

When boring is better

The "Traveling Salesman Problem" is a typical example. A researcher tries to compute the best pathways a proverbial salesperson should travel, and in which order, to visit hundreds, thousands, or tens of thousands of proverbial cities on a map.

The goal is to travel the shortest possible total distance.

"Nature-inspired approaches will find good solutions for 100 or so cities, but not optimal ones," said Tovey, who is also a professor and Stewart Faculty Fellow in Georgia Tech's Stewart School of Industrial and Systems Engineering. "By contrast, the top researchers can solve 20,000 or 50,000 locations optimally with a classical algorithm, and do it really quickly."

When ants miss and hit

"People have imitated ants to find the optimal pathways through a static system, and when you compare that method with classical optimization methods, then the classical methods are about 10 billion times better."

But life is fickle, which can make it a great teacher in science and engineering. "Every living creature is very good at solving a number of different problems, otherwise it would have gone extinct," Tovey said.

Toss unpredictability into an engineering problem, and natural algorithms that direct the movements of ants or bees can be better equipped to cope than classical solutions.

"In the Traveling Salesman Problem, the cities don't move around. But when you're chasing a moving target, and your data isn't perfectly complete, then you can have great success by imitating insect swarms. You can get real-time control on data that's quite literally on the fly," Tovey said.

When bees know best

That counts for a lot in a pinch. When a hurricane looms, people check their weather apps much more frequently as the tempest encroaches. When markets tank, people sell off stocks, and data surges in and out of financial servers.

"If the patterns of user demand on the web never changed, and the requests to a server always stayed the same, all would be well without imitating honeybees," Tovey said. "But that notion is ridiculous, as we all know."

"Bees have evolved to deal with flower patches that have changing characteristics. A patch that is great to visit at 10 o'clock in the morning may have its flowers closed-up at one o'clock in the afternoon, or it may be raining."

Algorithms steering bee behavior make the insect swarms adjust to supply and demand fluxes similar to those that confront a web server. The honeybees handed Tovey and his fellow researchers valuable insights for their web hosting algorithm.

When slime flops but amazes

Though classic algorithms beat nature in simple situations, watching natural algorithms in even the simplest organisms can be awe-inspiring. Take slime mold, a non-cellular organism related to amoebas.

"If you put down lumps of food near it, the slime mold will extend to reach the lumps and connect them with each other."

The mold makes very efficient connections that adapt well to differing constellations of food dabs.

"Some researchers placed food sources in spots corresponding to the locations of cities in Japan that were connected by rail lines, and sure enough, the slime mold eventually settled on a configuration connecting the spots that nearly perfectly matched the rail network that actually connected the cities," Tovey said.

Again here, classic algorithms do the job better, but still, that slime is just amazing.

For all his awe of bees, Tovey has had to avoid making their acquaintance in person and leave the bee-handling to his collaborators. "I and my whole family are all extremely allergic to bee stings," Tovey said. "We keep EpiPens around the house."

###

The Honey Bee Algorithm team that received the 2016 Golden Goose was comprised of: Tovey, John Bartholdi III, Sunil Nakrani, Thomas Seeley, and John Hagood Vande Vate. The research was funded by the National Science Foundation and the Office of Naval Research.

Media Contact

Ben Brumfield
ben.brumfield@comm.gatech.edu
404-660-1408

 @GeorgiaTech

http://www.gatech.edu

Ben Brumfield | EurekAlert!

More articles from Information Technology:

nachricht Accelerating quantum technologies with materials processing at the atomic scale
15.05.2019 | University of Oxford

nachricht A step towards probabilistic computing
15.05.2019 | University of Konstanz

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New studies increase confidence in NASA's measure of Earth's temperature

A new assessment of NASA's record of global temperatures revealed that the agency's estimate of Earth's long-term temperature rise in recent decades is accurate to within less than a tenth of a degree Fahrenheit, providing confidence that past and future research is correctly capturing rising surface temperatures.

The most complete assessment ever of statistical uncertainty within the GISS Surface Temperature Analysis (GISTEMP) data product shows that the annual values...

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

On Mars, sands shift to a different drum

24.05.2019 | Physics and Astronomy

Piedmont Atlanta first in Georgia to offer new minimally invasive treatment for emphysema

24.05.2019 | Medical Engineering

Chemical juggling with three particles

24.05.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>