Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ulster Scientists Join Intelligent Rescue Robot Partnership

13.08.2008
Scientists at the University of Ulster are to begin working on a multi-million pound project to develop unmanned 'intelligent' aerial robots which could revolutionise the way in which search and rescue operations or the response to natural or man-made disasters are carried out.

The small helicopters would be remotely controlled and would be able to send back pictures and data to a central command post. They would also be able to communicate with each other to co-ordinate their operations.

Professor Gerard Parr, Professor of Telecommunications Engineering at Ulster said the unmanned aerial vehicles (UAVs) could be used in a number of scenarios including to:

* Search for people lost in isolated areas like mountains, forests or moors.

* Monitor disasters like floods or forest fires which could cover thousands of acres.

* Survey biological disasters such as chemical factory fires and sample gas emissions.

* Act as a communications platform where normal radio or mobile telephone transmissions are impossible or disrupted.

Professor Parr and his colleague Professor Sally McClean, Professor of Mathematics at Ulster, are working with scientists from University College London and the University of Oxford on the project. The teams have been awarded a prestigious £2.2m grant from the Engineering and Physical Sciences Research Council, the UK government’s leading funding agency for research in engineering and physical sciences, to investigate the development of the innovative systems and control technology.

Ulster’s expertise lies in the fields of telecommunications protocolds, radio communications, control and optimization of data management. The project runs from September this year until February 2012.

Professor Parr said: “We intend to use helicopter models as the platform for the new technology. We need a vehicle that can carry cameras and various sensors as well as the control mechanisms. A helicopter-type unmanned vehicle would be able to hover and would be more stable than an aeroplane for specific operations.

“Ultimately, the intention would be to send several of these unmanned vehicles, a swarm, out at one time to enable them to cover a very large area in the shortest possible time. Using infra-red and other sensors they could scan large areas like Dartmoor, the Mournes or the Lake District using intelligent search algorithms to identify a target whilst at the same time avoiding collision with one another if someone was reported missing.

“They would be controlled from a command base, which could be a jeep roving about the area or possibly airborne, but they would also be able to act autonomously. For example, if one UAV detected a signal such as a heat source, or a radio pulse from clothing or a mobile phone call, it could leave the other vehicles to investigate and then return and relay its information back to base.” There are many engineering and research challenges to be addressed as part of the project, not least to design adequate energy awareness protocols that will optimise in-situ operations as long as possible in support of a particular mission.

The UAVs could stay aloft for up to half a hour, flying at 20-30mph or even faster over a range of 5000 metres or more depending on payload, mission function and power levels.

The vehicles could be equipped with application specific sensors, including heat sensitive cameras and video, gas particulate filters, wireless radio communications and GPS technology. They could organize their own search, determine if the object found was what they were looking for and then report back to the ground controller.

As well as Professors Parr and McClean, the multi-disciplinary team consists of Professor Steve Hailes and Dr Simon Julier from the Department of Computer Science at UCL and Dr Niki Trigoni and Dr Stephen Cameron from the Oxford University Computing Laboratory who have international reputations in the areas of hardware sensor design and helicoptor platforms.

The team were awarded the grant following a highly competitive process for funding under the EPSRC WINES III (Wireless and Wireless Intelligent Networked Systems) Research Programme. A total of 61 consortia proposals were originally submitted, with 15 shortlisted and four going through to the final selection.

The scientists will build prototypes of the unmanned vehicles with external partners including BAE Systems Operations Ltd, Thales Research and Technology UK Ltd, Communications Research Centre, Canada, BT Research Laboratories UK, Boeing Co, USA and the UK Home Office Science Development Branch.

David Young | alfa
Further information:
http://www.ulster.ac.uk

More articles from Information Technology:

nachricht CubeSats prove their worth for scientific missions
17.04.2019 | American Physical Society

nachricht Largest, fastest array of microscopic 'traffic cops' for optical communications
12.04.2019 | University of California - Berkeley

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>