Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stable magnetic bit of three atoms

21.09.2017

As reported today in the journal Nature Communications a team of experimentalists and theoreticians of the University of Hamburg in cooperation with the Forschungszentrum Jülich and the Radboud University in Nijmegen have experimentally realized a ferromagnetic particle composed of only three iron atoms which can serve as a bit for the magnetic storage of information. By particular electronic interactions of the bit with the conductive substrate it is positioned on, the information the bit carries can be processed in an unusual, so called non-collinear, way, which could add new functionality to future elements of information technology.

A reoccurring challenge in storage technology is the continuing demand for smaller “bits”, which is the fundamental storage unit. In magnetic memories this information is stored in the magnetization of small magnets. The need to store more and more information in a smaller and smaller area therefore involves the question of how small we can make a magnet which still keeps its magnetization for a prolonged period of time such that the information is not lost.


Illustration of the constructed magnetic bit composed of only three iron atoms on a platinum substrate

Recently, extensive research in this direction has approached the ultimate limit of storing information in individual atoms. A particular challenge for the use of such small storage elements was the destabilization of their magnetization by the interaction with the electrons of the substrate they are positioned on. Consequently, the prevalent approach in order to stabilize the magnetization was to strongly decouple the magnetic bit from the substrate electrons by the use of insulating layers.

However, this route entails the problem that the processing of the information the bit carries for computational purposes, which is done via exactly those substrate electrons, is rather difficult to achieve. To this end, a bit made of a few atoms which are positioned directly on a conductive substrate is highly desirable.

A team of experimentalists and theoreticians of the University of Hamburg in cooperation with the Forschungszentrum Jülich and the Radboud University in Nijmegen have now experimentally realized such a bit. The bit was constructed by using the magnetic tip of a scanning tunneling microscope as a tool for putting together only three iron atoms on a conductive platinum substrate (see the Figure, left panel). They were also able to use the magnetic tip in order to write information into a storage register of two of such bits (see the Figure, right panel) which keeps the stored information for hours.

By using conductive platinum as a substrate, the researchers were able to achieve an intriguing magnetic structure inside the bit and substrate (see the Figure, left panel): the magnetization of the individual constituents of the bit is not aligned parallel, as in conventional magnetic storage elements, but in a much more complex, so called non-collinear, fashion.

This non-collinearity enables to transmit the stored information to neighboring components using a large variety of angles between the magnetizations, other than just 0° and 180°, which will add more flexibility to information processing schemes.

Figure: Left panel: Illustration of the constructed magnetic bit composed of only three iron atoms on a platinum substrate. The arrows indicate the peculiar magnetization inside the bit which carries the information. Right panel: Magnetic images of the four possible states of a register of two of such magnetic bits. In these images, the height of the two bits reflects their state (0, low and 1, high). The iron atom in the back serves as a marker for the height of a tenth of a nanometer.

Original publication:
A gateway towards non-collinear spin processing using three-atom magnets with strong substrate coupling, J. Hermenau, J. Ibañez-Azpiroz, Chr. Hübner, A. Sonntag, B. Baxevanis, K. T. Ton, M. Steinbrecher, A. A. Khajetoorians, M. dos Santos Dias, S. Blügel, R. Wiesendanger, S. Lounis, and J. Wiebe,
Nature Communications (2017).
DIO: 10.1038/s41467-017-00506-7

Weitere Informationen:

http://www.nanoscience.de
http://www.sfb668.de

Heiko Fuchs | idw - Informationsdienst Wissenschaft

More articles from Information Technology:

nachricht Touchscreens go 3D with buttons that pulsate and vibrate under your fingertips
14.03.2019 | Universität des Saarlandes

nachricht EU project CALADAN set to reduce manufacturing cost of Terabit/s capable optical transceivers
11.03.2019 | IHP - Leibniz-Institut für innovative Mikroelektronik

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

Im Focus: Sensing shakes

A new way to sense earthquakes could help improve early warning systems

Every year earthquakes worldwide claim hundreds or even thousands of lives. Forewarning allows people to head for safety and a matter of seconds could spell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Levitating objects with light

19.03.2019 | Physics and Astronomy

New technique for in-cell distance determination

19.03.2019 | Life Sciences

Stellar cartography

19.03.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>