Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stable magnetic bit of three atoms

21.09.2017

As reported today in the journal Nature Communications a team of experimentalists and theoreticians of the University of Hamburg in cooperation with the Forschungszentrum Jülich and the Radboud University in Nijmegen have experimentally realized a ferromagnetic particle composed of only three iron atoms which can serve as a bit for the magnetic storage of information. By particular electronic interactions of the bit with the conductive substrate it is positioned on, the information the bit carries can be processed in an unusual, so called non-collinear, way, which could add new functionality to future elements of information technology.

A reoccurring challenge in storage technology is the continuing demand for smaller “bits”, which is the fundamental storage unit. In magnetic memories this information is stored in the magnetization of small magnets. The need to store more and more information in a smaller and smaller area therefore involves the question of how small we can make a magnet which still keeps its magnetization for a prolonged period of time such that the information is not lost.


Illustration of the constructed magnetic bit composed of only three iron atoms on a platinum substrate

Recently, extensive research in this direction has approached the ultimate limit of storing information in individual atoms. A particular challenge for the use of such small storage elements was the destabilization of their magnetization by the interaction with the electrons of the substrate they are positioned on. Consequently, the prevalent approach in order to stabilize the magnetization was to strongly decouple the magnetic bit from the substrate electrons by the use of insulating layers.

However, this route entails the problem that the processing of the information the bit carries for computational purposes, which is done via exactly those substrate electrons, is rather difficult to achieve. To this end, a bit made of a few atoms which are positioned directly on a conductive substrate is highly desirable.

A team of experimentalists and theoreticians of the University of Hamburg in cooperation with the Forschungszentrum Jülich and the Radboud University in Nijmegen have now experimentally realized such a bit. The bit was constructed by using the magnetic tip of a scanning tunneling microscope as a tool for putting together only three iron atoms on a conductive platinum substrate (see the Figure, left panel). They were also able to use the magnetic tip in order to write information into a storage register of two of such bits (see the Figure, right panel) which keeps the stored information for hours.

By using conductive platinum as a substrate, the researchers were able to achieve an intriguing magnetic structure inside the bit and substrate (see the Figure, left panel): the magnetization of the individual constituents of the bit is not aligned parallel, as in conventional magnetic storage elements, but in a much more complex, so called non-collinear, fashion.

This non-collinearity enables to transmit the stored information to neighboring components using a large variety of angles between the magnetizations, other than just 0° and 180°, which will add more flexibility to information processing schemes.

Figure: Left panel: Illustration of the constructed magnetic bit composed of only three iron atoms on a platinum substrate. The arrows indicate the peculiar magnetization inside the bit which carries the information. Right panel: Magnetic images of the four possible states of a register of two of such magnetic bits. In these images, the height of the two bits reflects their state (0, low and 1, high). The iron atom in the back serves as a marker for the height of a tenth of a nanometer.

Original publication:
A gateway towards non-collinear spin processing using three-atom magnets with strong substrate coupling, J. Hermenau, J. Ibañez-Azpiroz, Chr. Hübner, A. Sonntag, B. Baxevanis, K. T. Ton, M. Steinbrecher, A. A. Khajetoorians, M. dos Santos Dias, S. Blügel, R. Wiesendanger, S. Lounis, and J. Wiebe,
Nature Communications (2017).
DIO: 10.1038/s41467-017-00506-7

Weitere Informationen:

http://www.nanoscience.de
http://www.sfb668.de

Heiko Fuchs | idw - Informationsdienst Wissenschaft

More articles from Information Technology:

nachricht CubeSats prove their worth for scientific missions
17.04.2019 | American Physical Society

nachricht Largest, fastest array of microscopic 'traffic cops' for optical communications
12.04.2019 | University of California - Berkeley

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>