Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smarter use of mobile data

12.06.2017

The data constantly collected and reported by smartphones can find numerous applications. An SNSF-funded project devoted to crowdsensing has found ways to improve privacy and localisation accuracy as well as reduce the impact on hardware.

Connecting data from the world’s smartphones could put a global supercomputer into all of our pockets. Tapping into that processing power would improve the real-time collection and analysis of data, but technical hurdles and privacy concerns linger.

Scientists from SwissSenseSynergy, a project funded by the Swiss National Science Foundation (SNSF), have addressed issues and proposed new ways to collect and use such information.

The main focus of the project is crowdsensing, in which access to a smartphone’s sensors makes it possible to collect information about a particular area. A typical example are map applications which can infer traffic congestion data from the smartphones’ accelerometers.

... more about:
»GPs »SNF »Sensor »Smartphone »mobile data »signals

As our connected devices gather insights about many facets of our environment – motion, sound, people, air quality, etc. – crowdsensing has the potential to guide decisions on where we eat, what we wear or how we travel.

"All of this information is useful in applications ranging from marketing predictions to predicting crowd behaviours," explains Torsten Braun from the University of Bern and coordinator for the project. Nonetheless, crowdsensing applications face significant challenges.

In particular, there is a trade-off between data collection, user impact and privacy. Transmitting data drains hardware resources, for example, while poor security measures pose risks for identity theft.

Four teams developed new approaches to improve crowdsensing technology and establish best practices for its application. Researchers are exploring four key areas: improving location accuracy, increasing security, industry uses, and making data collection more efficient.

Localisation beyond GPS

The team led by Torsten Braun at the University of Bern improved location accuracy indoors and underground to 1.1 metres in 90% of cases. That is comparable to GPS, but relies only on the device's sensor data and radio signals, reaching areas behind walls and concrete where GPS signals are blocked. The researchers collect sensor measurements from the smartphones, alongside the Wifi radio’s signal strength. This information is then passed through several machine learning algorithms. "The next step is to determine where users are going," Braun said. "This could have an impact on shopping centres or train stations, for example."

Scientists from the universities of Bern and Geneva collaborated to design a mobile application combining indoor localisation, mobile crowdsensing and smart spaces. The resulting mobile app integrates sophisticated localisation algorithms and location-stamped sensor measurements, which are pushed to the cloud. From there, the information is fed to the Internet of Things, allowing personalised and location-based automation applications across a number of smart objects and products.

A team at the University of Applied Sciences and Arts of Southern Switzerland in Lugano (SUPSI) has developed models that use predictive location data to distribute information through social media. The experiments showed that they could create rapid outreach on social networks such as Facebook and Twitter, but also in ad hoc physical networks of mobile devices. These messages could respond to local behaviours, assess feedback in real time and circulate more quickly among targeted users. The research provides a deeper understanding of social influence in human behaviour, and discovered correlations between physical locations, shared preferences and event-based social communities.

A balancing act

"A major problem for researchers is balancing data and privacy," explains Braun. "Accurate data can cost privacy." If user information is being swept up while collecting data, it discourages participation. To ensure security, the Chalmers University of Technology team in Sweden has developed machine learning methods for data analysis and automatic decision making that achieve "differential privacy". This protects the data of individuals by injecting carefully calibrated "noise" (random data) into information collected from a device.

Researchers at the University of Geneva addressed another challenge: the desire to collect large amounts of data against the burden that crowdsensing can have on hardware. If users fear a strain on their phone, they might reject applications which make use of otherwise idle sensors. This project is investigating game theory models for distributing such burdens among phones and users. In a field experiment, volunteers in San Francisco downloaded apps to map noise levels in the city, collecting useful data for the local government while testing competing methods for distributing loads among devices.

With its interdisciplinary approach, the SwissSenseSynergy project has yielded new techniques with potential benefits for research and applications. The project is developing a novel experimentation architecture, called Vivo, to involve volunteers in the experimental phase to support application development.

- - - - - - - - - - - - -

The SwissSenseSynergy project

The project gathers four partners: the Institute of Computer Science at the University of Bern, the Department of Computer Science at the University of Geneva, the Institute for Information Systems and Networking at SUPSI and the Department of Computer Science and Engineering at Chalmers University of Technology (Sweden). Swiss Sense Synergy is funded by the Sinergia programme of the SNSF until the end of 2017.

Contact

Prof. Torsten Braun
Institute of Computer Science
University of Bern
CH-3012 Bern
Tel: +41 79 795 9682 (Eastern Standard Time, UTC−5)
E-mail: braun@inf.unibe.ch

- - - - - - - - - - - - - -

C. Dimitrakakis, B. Nelson, Z. Zhang, A. Mitrokotsa, B. I. P. Rubinstein: Differential Privacy for Bayesian Inference through Posterior Sampling. Journal of Machine Learning Research (2017), http://jmlr.org/papers/v18/15-257.html

A. Tossou, C. Dimitrakakis: Achieving Privacy in the adversarial multi-armed bandit. AAAI-2017, https://arxiv.org/abs/1701.04222

J. Carrera, Z. Zhao, T. Braun, A. Neto: A Real-time Indoor Tracking System in Smartphones, (submitted, 2017). http://boris.unibe.ch/99163/ (OA on request)

Z. Zhao, M. Karimzadeh, T. Braun: Next Place Prediction with Hybrid Features using Ensemble Learning, (submitted, 2017). http://boris.unibe.ch/id/eprint/98674 (OA on request)

Z. Zhao, S. Kuendig, J. Carrera, B. Carron, T. Braun, J. Rolim: Indoor Location for Smart Environments with Wireless Sensor and Actuator Networks (2017), https://arxiv.org/abs/1705.09543

K. Garg, S. Giordano, M. Jazayeri: INDIGO: Interest-Driven Data Dissemination Framework For Mobile Networks, (submitted, 2017).

L. Luceri, A. Vancheri, T. Braun, S. Giordano: On the Social Influence in Human Behavior: Location, Homophily, and Social Communities. (submitted, 2017). http://boris.unibe.ch/101024 (OA on request)

J. Buwaya, J. D. P. Rolim: Atomic Routing Mechanisms for Balance of Costs and Quality in Mobile Crowdsensing Systems. IEEE International Conference on Distributed Computing in Sensor Systems (DCOSS) (2017). http://www.swiss-sense-synergy.ch/wp-content/uploads/2017/04/Buwaya_Rolim_DCOSS1...

J. Buwaya, J. D. P. Rolim: Mobile Crowdsensing from a Selfish Routing Perspective. IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPS Workshops) (2017). http://www.swiss-sense-synergy.ch/wp-content/uploads/2017/04/Buwaya_Rolim_IPDPS_...

Weitere Informationen:

http://www.swiss-sense-synergy.ch

Medien - Abteilung Kommunikation | idw - Informationsdienst Wissenschaft

Further reports about: GPs SNF Sensor Smartphone mobile data signals

More articles from Information Technology:

nachricht NIST-led team develops tiny low-energy device to rapidly reroute light in computer chips
15.11.2019 | National Institute of Standards and Technology (NIST)

nachricht Fraunhofer Radio Technology becomes part of the worldwide Telecom Infra Project (TIP)
14.11.2019 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

Im Focus: Atoms don't like jumping rope

Nanooptical traps are a promising building block for quantum technologies. Austrian and German scientists have now removed an important obstacle to their practical use. They were able to show that a special form of mechanical vibration heats trapped particles in a very short time and knocks them out of the trap.

By controlling individual atoms, quantum properties can be investigated and made usable for technological applications. For about ten years, physicists have...

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

The neocortex is critical for learning and memory

20.11.2019 | Life Sciences

4D imaging with liquid crystal microlenses

20.11.2019 | Physics and Astronomy

Walking Changes Vision

20.11.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>